(2006•重慶)已知:m、n是方程x2-6x+5=0的兩個(gè)實(shí)數(shù)根,且m<n,拋物線(xiàn)y=-x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(m,0)、B(0,n).
(1)求這個(gè)拋物線(xiàn)的解析式;
(2)設(shè)(1)中拋物線(xiàn)與x軸的另一交點(diǎn)為C,拋物線(xiàn)的頂點(diǎn)為D,試求出點(diǎn)C、D的坐標(biāo)和△BCD的面積;
(3)P是線(xiàn)段OC上的一點(diǎn),過(guò)點(diǎn)P作PH⊥x軸,與拋物線(xiàn)交于H點(diǎn),若直線(xiàn)BC把△PCH分成面積之比為2:3的兩部分,請(qǐng)求出P點(diǎn)的坐標(biāo).
【答案】分析:(1)通過(guò)解方程即可求出m、n的值,那么A、B兩點(diǎn)的坐標(biāo)就可求出.然后根據(jù)A、B兩點(diǎn)的坐標(biāo)即可求出拋物線(xiàn)的解析式.
(2)根據(jù)(1)得出的拋物線(xiàn)的解析式即可求出C、D兩點(diǎn)的坐標(biāo).
由于△BCD的面積無(wú)法直接求出,可用其他圖形的面積的“和,差關(guān)系”來(lái)求出.過(guò)D作DM⊥x軸于M,那么△BCD的面積=梯形DMOB的面積+△DCM的面積-△BOC的面積.由此可求出△BCD的面積.
(3)由于△PCH被直線(xiàn)BC分成的兩個(gè)小三角形等高,因此面積比就等于底邊的比.如果設(shè)PH與BC的交點(diǎn)為E,那么EH就是拋物線(xiàn)與直線(xiàn)BC的函數(shù)值的差,而EP就是E點(diǎn)的縱坐標(biāo).然后可根據(jù)直線(xiàn)BC的解析式設(shè)出E點(diǎn)的坐標(biāo),然后表示出EH,EP的長(zhǎng).進(jìn)而可分兩種情況進(jìn)行討論:①當(dāng)EH=EP時(shí);②當(dāng)EH=EP時(shí).由此可得出兩個(gè)不同的關(guān)于E點(diǎn)橫坐標(biāo)的方程即可求出E點(diǎn)的坐標(biāo).也就求出了P點(diǎn)的坐標(biāo).
解答:解:(1)解方程x2-6x+5=0,
得x1=5,x2=1
由m<n,有m=1,n=5
所以點(diǎn)A、B的坐標(biāo)分別為A(1,0),B(0,5).
將A(1,0),B(0,5)的坐標(biāo)分別代入y=-x2+bx+c.

解這個(gè)方程組,得
所以,拋物線(xiàn)的解析式為y=-x2-4x+5

(2)由y=-x2-4x+5,令y=0,得-x2-4x+5=0
解這個(gè)方程,得x1=-5,x2=1
所以C點(diǎn)的坐標(biāo)為(-5,0).由頂點(diǎn)坐標(biāo)公式計(jì)算,得點(diǎn)D(-2,9).
過(guò)D作x軸的垂線(xiàn)交x軸于M.
則S△DMC=×9×(5-2)=
S梯形MDBO=×2×(9+5)=14,
S△BOC=×5×5=
所以,S△BCD=S梯形MDBO+S△DMC-S△BOC=14+-=15.
答:點(diǎn)C、D的坐標(biāo)和△BCD的面積分別是:(-5,0)、(-2,9)、15;
(3)設(shè)P點(diǎn)的坐標(biāo)為(a,0)
因?yàn)榫(xiàn)段BC過(guò)B、C兩點(diǎn),
所以BC所在的直線(xiàn)方程為y=x+5.
那么,PH與直線(xiàn)BC的交點(diǎn)坐標(biāo)為E(a,a+5),
PH與拋物線(xiàn)y=-x2-4x+5的交點(diǎn)坐標(biāo)為H(a,-a2-4a+5).
由題意,得①EH=EP,
即(-a2-4a+5)-(a+5)=(a+5)
解這個(gè)方程,得a=-或a=-5(舍去)
②EH=EP,即(-a2-4a+5)-(a+5)=(a+5)
解這個(gè)方程,得a=-或a=-5(舍去),
P點(diǎn)的坐標(biāo)為(-,0)或(-,0).
點(diǎn)評(píng):命題立意:考查一元二次方程的解法,二次函數(shù)解析式的確定、圖形的面積求法、函數(shù)圖象交點(diǎn)等知識(shí)及綜合應(yīng)用知識(shí)、解決問(wèn)題的能力.
點(diǎn)評(píng):(1)函數(shù)圖象交點(diǎn)坐標(biāo)為兩函數(shù)解析式組成的方程組的解.
(2)不規(guī)則圖形的面積通常轉(zhuǎn)化為規(guī)則圖形的面積的和差.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2006•重慶)已知:m、n是方程x2-6x+5=0的兩個(gè)實(shí)數(shù)根,且m<n,拋物線(xiàn)y=-x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(m,0)、B(0,n).
(1)求這個(gè)拋物線(xiàn)的解析式;
(2)設(shè)(1)中拋物線(xiàn)與x軸的另一交點(diǎn)為C,拋物線(xiàn)的頂點(diǎn)為D,試求出點(diǎn)C、D的坐標(biāo)和△BCD的面積;
(3)P是線(xiàn)段OC上的一點(diǎn),過(guò)點(diǎn)P作PH⊥x軸,與拋物線(xiàn)交于H點(diǎn),若直線(xiàn)BC把△PCH分成面積之比為2:3的兩部分,請(qǐng)求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年天津市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

(2006•重慶)已知:m、n是方程x2-6x+5=0的兩個(gè)實(shí)數(shù)根,且m<n,拋物線(xiàn)y=-x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(m,0)、B(0,n).
(1)求這個(gè)拋物線(xiàn)的解析式;
(2)設(shè)(1)中拋物線(xiàn)與x軸的另一交點(diǎn)為C,拋物線(xiàn)的頂點(diǎn)為D,試求出點(diǎn)C、D的坐標(biāo)和△BCD的面積;
(3)P是線(xiàn)段OC上的一點(diǎn),過(guò)點(diǎn)P作PH⊥x軸,與拋物線(xiàn)交于H點(diǎn),若直線(xiàn)BC把△PCH分成面積之比為2:3的兩部分,請(qǐng)求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年天津市中考數(shù)學(xué)模擬試卷(2)(解析版) 題型:解答題

(2006•重慶)已知:m、n是方程x2-6x+5=0的兩個(gè)實(shí)數(shù)根,且m<n,拋物線(xiàn)y=-x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(m,0)、B(0,n).
(1)求這個(gè)拋物線(xiàn)的解析式;
(2)設(shè)(1)中拋物線(xiàn)與x軸的另一交點(diǎn)為C,拋物線(xiàn)的頂點(diǎn)為D,試求出點(diǎn)C、D的坐標(biāo)和△BCD的面積;
(3)P是線(xiàn)段OC上的一點(diǎn),過(guò)點(diǎn)P作PH⊥x軸,與拋物線(xiàn)交于H點(diǎn),若直線(xiàn)BC把△PCH分成面積之比為2:3的兩部分,請(qǐng)求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年重慶市中考數(shù)學(xué)試卷(綜合卷)(解析版) 題型:解答題

(2006•重慶)已知:m、n是方程x2-6x+5=0的兩個(gè)實(shí)數(shù)根,且m<n,拋物線(xiàn)y=-x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(m,0)、B(0,n).
(1)求這個(gè)拋物線(xiàn)的解析式;
(2)設(shè)(1)中拋物線(xiàn)與x軸的另一交點(diǎn)為C,拋物線(xiàn)的頂點(diǎn)為D,試求出點(diǎn)C、D的坐標(biāo)和△BCD的面積;
(3)P是線(xiàn)段OC上的一點(diǎn),過(guò)點(diǎn)P作PH⊥x軸,與拋物線(xiàn)交于H點(diǎn),若直線(xiàn)BC把△PCH分成面積之比為2:3的兩部分,請(qǐng)求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案