【題目】小明同學在學習了全等三角形的相關(guān)知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是( )
A. 角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上
B. 角平分線上的點到這個角兩邊的距離相等
C. 三角形三條角平分線的交點到三條邊的距離相等
D. 以上均不正確
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在平面直角坐標系中,O為坐標原點,四邊形OABC是長方形,點A、C、D的坐標分別為A(9,0)、C(0,4),D(5,0),點P從點O出發(fā),以每秒1個單位長度的速度沿O→C→B→A運動,點P的運動時間為t秒.則當t=____秒時,△ODP是腰長為5的等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若我們規(guī)定三角“”表示為:abc;方框“”表示為:(xm+yn).例如:=1×19×3÷(24+31)=3.請根據(jù)這個規(guī)定解答下列問題:
(1)計算:= ______ ;
(2)代數(shù)式為完全平方式,則k= ______ ;
(3)解方程:=6x2+7.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB∥CD,∠A = ∠D,試說明 AC∥DE 成立的理由.
下面是彬彬同學進行的推理,請你將彬彬同學的推理過程補充完整。
解:∵ AB ∥ CD (已知)
∴ ∠A = (兩直線平行,內(nèi)錯角相等)
又∵ ∠A = ∠D( )
∴ ∠ = ∠ (等量代換)
∴ AC ∥ DE ( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC,BD相交于點O,點E,F(xiàn)分別在線段OA,OC上,且OB=OD,∠1=∠2,AE=CF.
(1)證明:△BEO≌△DFO;
(2)證明:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠B=104°,∠C=120°,AO、DO分別平分∠BAD和∠CDA,EO⊥AO,則∠EOD=________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=的圖象經(jīng)過點A(4,m),AB⊥x軸,且△AOB的面積為2.
(1)求k和m的值;
(2)若點C(x,y)也在反比例函數(shù)y=的圖象上,當-3≤x≤-1時,求函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,解答下面的問題:
我們知道方程有無數(shù)個解,但在實際問題中往往只需求出其正整數(shù)解.
例:由,得:( 、為正整數(shù)).要使為正整數(shù),則為正整數(shù),可知: 為3的倍數(shù),從而,代入.所以的正整數(shù)解為.
問題:
(1)請你直接寫出方程=8的正整數(shù)解 .
(2)若為自然數(shù),則滿足條件的正整數(shù)的值有( )
A.3個 B.4個 C.5個 D.6個
(3)關(guān)于, 的二元一次方程組的解是正整數(shù),求整數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com