【題目】如圖,為等邊三角形,,相交于點(diǎn),于點(diǎn),且,則的長為( )

A.7B.8C.9D.10

【答案】C

【解析】

由已知條件,先證明△ABE≌△CAD得∠BPQ=60°,可得BP=2PQ=8,AD=BE.則易求.

解:∵△ABC為等邊三角形,

∴AB=CA,∠BAE=∠ACD=60°;

又∵AE=CD,

在△ABE和△CAD中,

∴△ABE≌△CAD(SAS);

∴BE=AD,∠CAD=∠ABE;

∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;

∵BQ⊥AD,

∴∠AQB=90°,則∠PBQ=90°60°=30°

∵PQ=3,

∴在Rt△BPQ中,BP=2PQ=8;

又∵PE=1,

∴AD=BE=BP+PE=9.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊥BC,DC⊥BC,EBC上一點(diǎn),使得AE⊥DE;

(1)求證:△ABE∽△ECD;

(2)AB=4,AE=BC=5,求CD的長;

(3)當(dāng)△AED∽△ECD時(shí),請寫出線段AD、AB、CD之間數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB O 的一條弦,C AB 的中點(diǎn),過點(diǎn) C 作直線垂直于OA 于點(diǎn) D,交過點(diǎn) B O 的切線于點(diǎn) E

(1)求證:BECE;

(2)若O 的半徑長為 8,AB12,求 BE 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,經(jīng)過點(diǎn)A6,0)的直線ykx3與直線y=﹣x交于點(diǎn)B,點(diǎn)P從點(diǎn)O出發(fā)以每秒1個單位長度的速度向點(diǎn)A勻速運(yùn)動.

1)求點(diǎn)B的坐標(biāo);

2)當(dāng)△OPB是直角三角形時(shí),求點(diǎn)P運(yùn)動的時(shí)間;

3)當(dāng)BP平分△OAB的面積時(shí),直線BPy軸交于點(diǎn)D,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,M經(jīng)過原點(diǎn)O(0,0),點(diǎn)A,0)與點(diǎn)B(0,﹣1),點(diǎn)D在劣弧OA上,連接BDx軸于點(diǎn)C,且∠COD=∠CBO

(1)請直接寫出M的直徑,并求證BD平分∠ABO;

(2)在線段BD的延長線上尋找一點(diǎn)E,使得直線AE恰好與M相切,求此時(shí)點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市現(xiàn)在有兩種用電收費(fèi)方法:

分時(shí)電表

普通電表

峰時(shí)(8:00~21:00)

谷時(shí)(21:00到次日8:00)

電價(jià)0.55元/千瓦·時(shí)

電價(jià)0.35元/千瓦·時(shí)

電價(jià)0.52元/千瓦·時(shí)

小明家所在的小區(qū)用的電表都換成了分時(shí)電表.

解決問題:

(1)小明家庭某月用電總量為千瓦·時(shí)(為常數(shù));谷時(shí)用電千瓦·時(shí),峰時(shí)用電千瓦·時(shí),分時(shí)計(jì)價(jià)時(shí)總價(jià)為元,普通計(jì)價(jià)時(shí)總價(jià)為元,求,與用電量的函數(shù)關(guān)系式.

(2)小明家庭使用分時(shí)電表是不是一定比普通電表合算呢?

(3)下表是路皓家最近兩個月用電的收據(jù):

谷時(shí)用電(千瓦·時(shí))

峰時(shí)用電(千瓦·時(shí))

181

239

根據(jù)上表,請問用分時(shí)電表是否合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,,是線段上靠近點(diǎn)的三等分點(diǎn).

(1)若點(diǎn)軸上的一動點(diǎn),連接、,當(dāng)的值最小時(shí),求出點(diǎn)的坐標(biāo)及的最小值;

(2)如圖2,過點(diǎn),交于點(diǎn),再將繞點(diǎn)作順時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角度為,記旋轉(zhuǎn)中的三角形為,在旋轉(zhuǎn)過程中,直線與直線的交點(diǎn)為,直線與直線交于點(diǎn),當(dāng)為等腰三角形時(shí),請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求證:相似三角形對應(yīng)邊上的中線之比等于相似比.

要求:①根據(jù)給出的△ABC及線段A'B′,A′(A′=A),以線段A′B′為一邊,在給出的圖形上用尺規(guī)作出△A'B′C′,使得△A'B′C′∽△ABC,不寫作法,保留作圖痕跡;

②在已有的圖形上畫出一組對應(yīng)中線,并據(jù)此寫出已知、求證和證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場需求,新生活超市在端午節(jié)前夕購進(jìn)價(jià)格為3/個的某品牌粽子,根據(jù)市場預(yù)測,該品牌粽子每個售價(jià)4元時(shí),每天能出售500個,并且售價(jià)每上漲0.1元,其銷售量將減少10個,為了維護(hù)消費(fèi)者利益,物價(jià)部門規(guī)定,該品牌粽子售價(jià)不能超過進(jìn)價(jià)的200%,請你利用所學(xué)知識幫助超市給該品牌粽子定價(jià),使超市每天的銷售利潤為800元.

查看答案和解析>>

同步練習(xí)冊答案