精英家教網 > 初中數學 > 題目詳情

已知二次函數數學公式,解答下列問題.
(1)將這個二次函數化為y=a(x-h)2+k的形式;
(2)寫出這個二次函數的頂點坐標和對稱軸.

解:(1)=-(x2-2x+1)+2=-(x-1)2+2,即y=-(x-1)2+2;

(2)由(1)知,該函數的頂點式關系式是:y=-(x-1)2+2
∴該函頂點坐標是(1,2);對稱軸是直線x=1.
分析:(1)利用配方法將二次函數化為y=a(x-h)2+k的形式;
(2)二次函數的頂點式關系式找出其頂點坐標、對稱軸.
點評:本題主要考查的是二次函數的一般形式的關系式與頂點式關系式的轉化方法,及二次函數的性質.二次函數的解析式有三種形式:
(1)一般式:y=ax2+bx+c(a≠0,a、b、c為常數);
(2)頂點式:y=a(x-h)2+k;
(3)交點式(與x軸):y=a(x-x1)(x-x2).
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知二次函數y=-
12
x2+bx+c的圖象經過點A(-3,-6),并與x軸交于點B(-1,0)和點C,頂點為P.
(1)求二次函數的解析式;
(2)設點M為線段OC上一點,且∠MPC=∠BAC,求點M的坐標;
說明:若(2)你經歷反復探索沒有獲得解題思路,請你在不改變點M的位置的情況下添加一個條件解答此題,此時(2)最高得分為3分.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知二次函數y=-數學公式x2+bx+c的圖象經過點A(-3,-6),并與x軸交于點B(-1,0)和點C,頂點為P.
(1)求二次函數的解析式;
(2)設點M為線段OC上一點,且∠MPC=∠BAC,求點M的坐標;
說明:若(2)你經歷反復探索沒有獲得解題思路,請你在不改變點M的位置的情況下添加一個條件解答此題,此時(2)最高得分為3分.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知一元二次方程x2axa-2=0.

(1)求證:不論a為何實數,此方程總有兩個不相等的實數根;

(2)設a<0,當二次函數yx2axa-2的圖象與x軸的兩個交點的距離為時,求出此二次函數的解析式;

(3)在(2)的條件下,若此二次函數圖象與x軸交于A、B兩點,在函數圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標,若不存在請說明理由.

【解析】(1)判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了,(2)根據二次函數圖象與x軸的兩個交點的距離公式解答即可.(3)是二次函數綜合應用問題和三角形的綜合應用

 

查看答案和解析>>

科目:初中數學 來源:2012屆北京市西城區(qū)九年級一模數學卷(解析版) 題型:解答題

已知一元二次方程x2axa-2=0.

(1)求證:不論a為何實數,此方程總有兩個不相等的實數根;

(2)設a<0,當二次函數yx2axa-2的圖象與x軸的兩個交點的距離為時,求出此二次函數的解析式;

(3)在(2)的條件下,若此二次函數圖象與x軸交于A、B兩點,在函數圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標,若不存在請說明理由.

【解析】(1)判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了,(2)根據二次函數圖象與x軸的兩個交點的距離公式解答即可.(3)是二次函數綜合應用問題和三角形的綜合應用

 

查看答案和解析>>

同步練習冊答案