【題目】如圖,在△ABC中,ABAC10,BC16,點DBC邊上的一個動點(點D不與點B、點C重合).以D為頂點作∠ADE=∠B,射線DEAC邊于點E,過點AAFAD交射線DE于點F

1)求證:ABCEBDCD;

2)當DF平分∠ADC時,求AE的長;

3)當△AEF是等腰三角形時,求BD的長.

【答案】1)見解析;(2AE;(3BD的長為11

【解析】

1)根據(jù)等腰三角形的性質得到BC,根據(jù)三角形的外角性質得到BADCDE,得到BAD∽△CDE,根據(jù)相似三角形的性質證明結論;

2)證明,根據(jù)平行線的性質得到,證明BDA∽△BAC,根據(jù)相似三角形的性質列式計算,得到答案;

3)分點FDE的延長線上、點F在線段DE上兩種情況,根據(jù)等腰三角形的性質計算即可.

1)證明:ABAC

∴∠BC,

ADCBAD+∠BADEB,

∴∠BADCDE,又BC,

∴△BAD∽△CDE,

,即ABCEBDCD;

2)解:DF平分ADC,

∴∠ADECDE,

∵∠CDEBAD,

∴∠ADEBAD,

,

∵∠BADADEB,

∴∠BADC,又BB,

∴△BDA∽△BAC,

,即

解得,BD,

,

解得,AE;

3)解:作AHBCH

ABAC,AHBC

BHHCBC8,

由勾股定理得,AH6,

∴tanB,

∴tan∠ADF,

AF3x,則AD4x,

由勾股定理得,DF5x,

∵△BAD∽△CDE,

,

當點FDE的延長線上,FAFE時,DE5x3x2x

,

解得,CD5,

BDBCCD11,

EAEF時,DEEF2.5x,

,

解得,CD,

BDBCCD

AEAF3x時,DEx,

解得,CD,

BDBCCD;

當點F在線段DE上時,AFE為鈍角,

只有FAFE3x,則DE8x,

解得,CD2016,不合題意,

∴△AEF是等腰三角形時,BD的長為11

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線(a0)的對稱軸為直線,且拋物線經(jīng)過A(10),C(03)兩點,與軸交于點B

1)若直線經(jīng)過B,C兩點,求直線BC和拋物線的解析式;

2)在拋物線的對稱軸上找一點M,使MA+MC的值最小,求點M的坐標;

3)設P為拋物線的對稱軸上的一個動點,求使ΔBPC為直角三角形的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定:一個多邊形上任意兩點間距離的最大值稱為該多邊形的直徑.現(xiàn)有兩個全等的三角形,邊長分別為4、4、.將這兩個三角形相等的邊重合拼成對角線互相垂直的凸四邊形,那么這個凸四邊形的直徑______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的頂點A,Bx軸的負半軸上,反比例函數(shù)yk1≠0)在第二象限內的圖象經(jīng)過正方形ABCD的頂點Dm,2)和BC邊上的點Gn,),直線y=k2x+bk2≠0)經(jīng)過點D,點G,則不等式≤k2x+b的解集為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為調查越城區(qū)2019年空氣質量情況,小強同學從區(qū)環(huán)保局調取了2019年全年365天的空氣質量(AQI)數(shù)據(jù),并從中隨機抽取了80天的空氣質量指數(shù)(AQI)數(shù)據(jù),繪制出三幅不完整的統(tǒng)計圖表,請根據(jù)圖表中提供的信息解答下列問題:

1)請求出統(tǒng)計表中mn的值;

2)補全條形統(tǒng)計圖,并通過計算估計越城區(qū)2019年全年空氣質量等級為“優(yōu)”和“良”的天數(shù);

3)據(jù)調查,嚴重污染的2天發(fā)生在春節(jié)期間,燃放煙花爆竹成為空氣污染的一個重要原因.據(jù)此,請你提出一條合理化建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明為探究函數(shù)的圖象和性質,需要畫出函數(shù)圖象,列表如下:

……

……

……

……

根據(jù)上表數(shù)據(jù),在平面直角坐標系中描點,畫出函數(shù)圖象,如圖如示,小明畫出了圖象的一部分.

1)請你幫小明畫出完整的的圖象;

2)觀察函數(shù)圖象,請寫出這個函數(shù)的兩條性質:

性質一: ;

性質二:

3)利用上述圖象,探究函數(shù)圖象與直線的關系;

①當 時, 直線與函數(shù)在第一象限的圖象有一個交點,則的坐標是 ;

為何值時,討論函數(shù)的圖象與直線的交點個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2017年“五一”長假期間旅游情況統(tǒng)計圖,根據(jù)以下信息解答下列問題:

(1)2017年“五一”期間,該市周邊景點共接待游客 萬人,扇形統(tǒng)計圖中A景點所對應的圓心角的度數(shù)是 ,并補全條形統(tǒng)計圖.

(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預計2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?

(3)甲、乙兩個旅行團在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的高AD與中線BE相交于點F,過點CBE的平行線、過點FAB的平行線,兩平行線相交于點G,連接BG

1)若AE=2.5CD=3,BD=2,求AB的長;

2)若CBE=30°,求證:CG=AD+EF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校七年級共有800名學生,準備調查他們對低碳知識的了解程度.

(1)在確定調查方式時,團委設計了以下三種方案:

方案一:調查七年級部分女生;

方案二:調查七年級部分男生;

方案三:到七年級每個班去隨機調查一定數(shù)量的學生.

請問其中最具有代表性的一個方案是   ;

(2)團委采用了最具有代表性的調查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計圖(如圖①、圖②所示),請你根據(jù)圖中信息,將兩個統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中,比較了解所在扇形的圓心角的度數(shù)是   

(4)請你估計該校七年級約有   名學生比較了解低碳知識.

查看答案和解析>>

同步練習冊答案