如圖,AB、BC、CD分別與⊙O相切與E,F,G,且AB∥CD,BO=6㎝,CO=8㎝,求BC的長(zhǎng)。
10cm.

試題分析:根據(jù)切線長(zhǎng)定理和平行線的性質(zhì)定理得到△BOC是直角三角形.再根據(jù)勾股定理求出BC的長(zhǎng).
試題解析:∵AB,BC,CD分別與⊙O相切于E,F(xiàn),G;
∴∠CBO=∠ABC,∠BCO=∠DCB,
∵AB∥CD,
∴∠ABC+∠DCB=180°,
∴∠CBO+∠BCO=∠ABC+∠DCB=(∠ABC+∠DCB)=90°.
∴BC=cm.
考點(diǎn): 切割線定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點(diǎn)D,AC交⊙O于點(diǎn)E,∠BAC=50°,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,點(diǎn)D在以AC為直徑的⊙O上,如果∠BDC=20°,那么∠ACB=_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB為⊙O的直徑,C是⊙O上一點(diǎn),D在AB的延長(zhǎng)線上,且∠DCB=∠A.求證:CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在坐標(biāo)平面內(nèi),半徑為R的⊙C與x軸交于點(diǎn)D(1,0)、E(5,0),與y軸的正半軸相切于點(diǎn)A。點(diǎn)A、B關(guān)于x軸對(duì)稱,點(diǎn)P(a,0)在x的正半軸上運(yùn)動(dòng),作直線BP,作EH⊥BP于H。

⑴求圓心C的坐標(biāo)及半徑R的值;
⑵△POB和△PHE隨點(diǎn)P的運(yùn)動(dòng)而變化,若它們?nèi),求a的值;
⑶當(dāng)a=6時(shí),試確定直線BP與⊙C的位置關(guān)系并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:△ABC是邊長(zhǎng)為4的等邊三角形,點(diǎn)O在邊AB上,⊙O過(guò)點(diǎn)B且分別與邊AB,BC相交于點(diǎn)D,E,EF⊥AC,垂足為F.

(1)求證:直線EF是⊙O的切線;
(2)當(dāng)直線DF與⊙O相切時(shí),求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

點(diǎn)P為⊙O內(nèi)一點(diǎn),若⊙O 的直徑是10,OP= 4,則過(guò)點(diǎn)P的最短的弦長(zhǎng)是           

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙O的半徑為2,點(diǎn)A的坐標(biāo)為,直線AB為⊙O的切線,B為切點(diǎn).則B點(diǎn)的坐標(biāo)為_(kāi)_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知⊙O的弦AB=8cm,圓心O到弦AB的距離為3cm,則⊙O的直徑為_(kāi)______cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案