(2008•常州)如圖,⊙O的直徑AB與弦AC的夾角為30°,切線CD與AB的延長線交于點D,若⊙O的半徑為2,則CD的長為( )

A.2
B.4
C.2
D.4
【答案】分析:連接OC,BC,AB是直徑,CD是切線,先求得∠OCD=90°再求∠COB=2∠A=60°,利用三角函數(shù)即可求得CD的值.
解答:解:連接OC,BC,AB是直徑,則∠ACB=90°,
∵CD是切線,
∴∠OCD=90°,
∵∠A=30°,
∴∠COB=2∠A=60°,CD=OC•tan∠COD=2
故選A.
點評:本題利用了切線的性質(zhì),直徑對的圓周角是直角求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2008•常州)如圖,拋物線y=x2+4x與x軸分別相交于點B、O,它的頂點為A,連接AB,把AB所在的直線沿y軸向上平移,使它經(jīng)過原點O,得到直線l,設(shè)P是直線l上有一動點.
(1)求點A的坐標(biāo);
(2)以點A、B、O、P為頂點的四邊形中,有菱形、等腰梯形、直角梯形,請分別直接寫出這些特殊四邊形的頂點P的坐標(biāo);
(3)設(shè)以點A、B、O、P為頂點的四邊形的面積為S,點P的橫坐標(biāo)為x,當(dāng)≤S≤時,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省廣州市廣大附中中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2008•常州)如圖,拋物線y=x2+4x與x軸分別相交于點B、O,它的頂點為A,連接AB,把AB所在的直線沿y軸向上平移,使它經(jīng)過原點O,得到直線l,設(shè)P是直線l上有一動點.
(1)求點A的坐標(biāo);
(2)以點A、B、O、P為頂點的四邊形中,有菱形、等腰梯形、直角梯形,請分別直接寫出這些特殊四邊形的頂點P的坐標(biāo);
(3)設(shè)以點A、B、O、P為頂點的四邊形的面積為S,點P的橫坐標(biāo)為x,當(dāng)≤S≤時,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年江蘇省常州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•常州)如圖,拋物線y=x2+4x與x軸分別相交于點B、O,它的頂點為A,連接AB,把AB所在的直線沿y軸向上平移,使它經(jīng)過原點O,得到直線l,設(shè)P是直線l上有一動點.
(1)求點A的坐標(biāo);
(2)以點A、B、O、P為頂點的四邊形中,有菱形、等腰梯形、直角梯形,請分別直接寫出這些特殊四邊形的頂點P的坐標(biāo);
(3)設(shè)以點A、B、O、P為頂點的四邊形的面積為S,點P的橫坐標(biāo)為x,當(dāng)≤S≤時,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年浙江省舟山市岱山縣中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

(2008•常州)如圖是一個不完整的正方體平面展開圖,需再添上一個面,折疊后才能圍成一個正方體.下面是四位同學(xué)補畫的情況(圖中陰影部分),其中正確的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(08)(解析版) 題型:解答題

(2008•常州)如圖,港口B位于港口O正西方向120海里處,小島C位于港口O北偏西60°的方向.一艘科學(xué)考察船從港口O出發(fā),沿北偏西30°的OA方向以20海里/小時的速度駛離港口O.同時一艘快艇從港口B出發(fā),沿北偏東30°的方向以60海里/小時的速度駛向小島C,在小島C用1小時裝補給物資后,立即按原來的速度給考察船送去.
(1)快艇從港口B到小島C需要多少時間?
(2)快艇從小島C出發(fā)后最少需要多少時間才能和考察船相遇?

查看答案和解析>>

同步練習(xí)冊答案