如圖,在直角△ABC中,∠BAC=90°,AB=3,M是邊BC上的點(diǎn),連接AM.如果將△ABM沿直線AM翻折后,點(diǎn)B恰好在邊AC的中點(diǎn)處,那么點(diǎn)M到AC的距離是( )

A.1.5
B.2
C.2.5
D.3
【答案】分析:作ME⊥AC,證明△CEM∽△CAB,然后利用折疊的性質(zhì)和相似三角形的性質(zhì)列出方程解答.
解答:解:如圖,作ME⊥AC于E,則∠MEC=90°,
又∵在Rt△ABC中,∠BAC=90°,
∴∠MEC=∠BAC,
∴ME∥AB,
∴∠BAM=∠EMA=45°(兩直線平行,內(nèi)錯(cuò)角相等),
∵∠BAM=∠MAC=45°,
∴∠MAE=∠AME=45°,
∴ME=AE,
∵M(jìn)E∥AB,
∴△CEM∽△CAB,
=,
解得:ME=2,
所以點(diǎn)M到AC的距離是2.
故選B.
點(diǎn)評(píng):本題利用了:1、折疊的性質(zhì):折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等;2、平行線和相似三角形判定和性質(zhì)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角△ABC中,∠C=90°、AB=6、AC=3,⊙O與邊AB相切于點(diǎn)D、與邊AC交于點(diǎn)E,連接DE,若DE∥BC,AE=2EC,則⊙O的半徑是
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角△ABC中,∠C=90°,AB的垂直平分線交AB于D,交AC于F,且BE平分∠ABC,則∠A=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角△ABC中,∠C=90°,∠CAB的平分線AD交BC于點(diǎn)D,DE垂直平分AB.
(1)求∠B的度數(shù);
(2)若DC=1,求DB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖.在直角△ABC中,已知∠ACB=90°,CD⊥AB于點(diǎn)D,則下列關(guān)系不一定成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角△ABC中,∠A=90°,BC邊上的垂直平分線交AC于點(diǎn)D;BD平分∠ABC,已知AC=m+2n,BC=2m+2n,則△BDE的周長(zhǎng)為
2m+3n
2m+3n
(用含m,n字母表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案