【題目】今年疫情期間,為了更好地落實“停課不停學”行動,我市某中學為了更好督促學生學習,組織教師對某班學生進行家訪,根據(jù)學生參加網(wǎng)絡學習效果劃分為(差),(中),(優(yōu)),(良)四個等級,并繪制了下面不完整的統(tǒng)計圖表,根據(jù)圖表中提供的信息解答下列問題;
(1)求,的值;
(2)求等級對應扇形圓心角的度數(shù);
(3)學校要從等級的學生中隨機選取2人參加李老師個性化輔導,用列表或畫樹狀圖求等級中的學生小慧被選中參加輔導的概率.
效果等級 | 頻數(shù) | 頻率 |
5 | ||
0.3 | ||
20 |
【答案】(1),;(2);(3)
【解析】
(1)從扇形統(tǒng)計圖知道A占5%,從統(tǒng)計表可知A學生的頻數(shù)是5,即可求出全班學生總數(shù),進而求得a、b;
(2)從表格統(tǒng)計表可知D等級學生頻數(shù)時20,即可求出所對的圓心角的度數(shù);
(3)設等級的5名學生分別用字母、、、、代替,期中學生代表是小慧同學,用列表法表示,并從中找出小慧被選中的結(jié)果數(shù)及總結(jié)果,直接求出 概率.
解:(1)某班學生總?cè)藬?shù)是:
,
(2)等級對應扇形圓心角的度數(shù)是:
(3)解:設等級的5名學生分別用字母、、、、代替,期中學生代表是小慧同學,列表如下
②/① | |||||
/ | |||||
/ | |||||
/ | |||||
/ | |||||
/ |
總共有20種選取的情況,每種情況機會均等,其中小慧同學()被選取的機會有8種
所以小慧同學()被選取的概率為
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為F,CG⊥AE,交弦AE的延長線于點G,且CG=CF.
(1)求證:CG是⊙O的切線;
(2)若AE=2,EG=1,求由弦BC和所圍成的弓形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,以為直徑作半圓,交于點,連接,過點作,垂足為點,交的延長線于點.
(1)求證:是的切線;
(2)如果的徑為5,,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是由6 6個邊長為1的小正方形網(wǎng)格組成,每個小正方形的頂點稱為格點,△ABC的三個頂點A,B,C均在格點上,請僅用無刻度的直尺,按下列要求畫圖.
(1)在圖1中找一個格點D,使以點A、B、C、D為頂點的四邊形是平行四邊形(畫出一種情況即可)
(2)在圖2中僅用無刻度的直尺,把線段AB三等分(保留畫圖痕跡,不寫畫法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】邊長為4的正方形ABCD中,點E是BC邊上的一個動點,連接DE,交AC于點N,過點D作DF⊥DE,交BA的延長線于點F,連接EF,交AC于點M.
(1)判定△DFE的形狀,并說明理由;
(2)設CE=x,△AMF的面積為y,求y與x之間的函數(shù)關系式;并求出當x為何值時y有最大值?最大值是多少?
(3)隨著點E在BC邊上運動,NA·MC的值是否會發(fā)生變化?若不變,請求出NA·MC的值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一只不透明的袋子中裝有4個大小、質(zhì)地都相同的乒乓球,球面上分別標有數(shù)字1、2、3、4.
(1)攪勻后從中任意摸出1個球,求摸出的乒乓球球面上數(shù)字為1的概率;
(2)攪勻后先從中任意摸出1個球(不放回),再從余下的3個球中任意摸出1個球,求2次摸出的乒乓球球面上數(shù)字之和為偶數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形是矩形,四邊形是正方形,點、在軸的正半軸上,點在軸的正半軸上,點在上,點、在函數(shù)的圖象上,若正方形的面積為4,且,則的值為( )
A.24B.12C.6D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】廣宇、承義兩名同學分別進行5次射擊訓練,訓練成績(單位:環(huán))如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
廣宇 | 9 | 8 | 7 | 7 | 9 |
承義 | 6 | 8 | 10 | 8 | 8 |
對他們的訓練成績作如下分析,其中說法正確的是( )
A.廣宇訓練成績的平均數(shù)大于承義訓練成績平均數(shù)
B.廣宇訓練成績的中位數(shù)與承義訓練成績中位數(shù)不同
C.廣宇訓練成績的眾數(shù)與承義訓練成績眾數(shù)相同
D.廣宇訓練成績比承義訓練成績更加穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】假設某商場地下停車場有5個出入口,每天早晨7點開始對外停車且此時車位空置率為90%,在每個出入口的車輛數(shù)均是勻速出入的情況下,如果開放2個進口和3個出口,6小時車庫恰好停滿;如果開放3個進口和2個出口,3小時車庫恰好停滿.2019年清明節(jié)期間,由于商場人數(shù)增多,早晨7點時的車位空置率變?yōu)?/span>60%,因為車庫改造,只能開放1個進口和1個出口,則從早晨7點開始經(jīng)過______小時車庫恰好停滿.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com