如圖,點(diǎn)A、B、D在⊙O上,∠A=25°,OD的延長(zhǎng)線(xiàn)交直線(xiàn)BC于點(diǎn)C,且∠OCB=40°,直線(xiàn)BC與⊙O的位置關(guān)系為_(kāi)_____.
∵∠BOC=2∠A=50°,∠OCB=40°,
∴在△OBC中,∠OBC=180°-50°-40°=90度.
∴直線(xiàn)BC與⊙O相切.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在⊙O的外切梯形ABCD中,ADBC,則∠DOC的度數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB為⊙O的直徑,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D.
(1)求證:AT平分∠BAC;
(2)若AD=2,TC=
3
,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,P是⊙O外一點(diǎn),割線(xiàn)POB與⊙O相交于A(yíng)、B,切線(xiàn)PC與⊙O相切于C,若PA=2,PC=3,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,PA,PB是⊙O的切線(xiàn),AC是⊙O的直徑,∠P=40°,則∠BAC=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在等腰梯形ABCD中,ADBC,AB=DC,且BC=2.以CD為直徑作⊙O′交AD于點(diǎn)E,過(guò)點(diǎn)E作EF⊥AB于點(diǎn)F.建立如圖所示的平面直角坐標(biāo)系,已知A、B兩點(diǎn)坐標(biāo)分別為A(2,0)、B(0,2
3
).
(1)求C、D兩點(diǎn)的坐標(biāo);
(2)求證:EF為⊙O′的切線(xiàn);
(3)將梯形ABCD繞點(diǎn)A旋轉(zhuǎn)180°到A′B′C′D′,直線(xiàn)CD上是否存在點(diǎn)P,使以點(diǎn)P為圓心,PD為半徑的⊙P與直線(xiàn)C′D′相切?如果存在,請(qǐng)求出P點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖1,把矩形紙片ABCD折疊,使得頂點(diǎn)A與邊DC上的動(dòng)點(diǎn)P重合(P不與點(diǎn)D,C重合),MN為折痕,點(diǎn)M,N分別在邊BC,AD上,連接AP,MP,AM,AP與MN相交于點(diǎn)F.⊙O過(guò)點(diǎn)M,C,P.
(1)請(qǐng)你在圖1中作出⊙O(不寫(xiě)作法,保留作圖痕跡);
(2)
AF
AN
AP
AD
是否相等?請(qǐng)你說(shuō)明理由;
(3)隨著點(diǎn)P的運(yùn)動(dòng),若⊙O與AM相切于點(diǎn)M時(shí),⊙O又與AD相切于點(diǎn)H.設(shè)AB為4,請(qǐng)你通過(guò)計(jì)算,畫(huà)出這時(shí)的圖形.(圖2,3供參考)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,AB、AC與⊙O相切于B、C,∠A=50°,點(diǎn)P是圓上異于B、C的一動(dòng)點(diǎn),則∠BPC的度數(shù)是(  )
A.65°B.115°C.65°和115°D.130°和50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,在△ABC中,∠ACB=90°,∠ABC的平分線(xiàn)BD交AC于點(diǎn)D,DE⊥DB交AB于點(diǎn)E,過(guò)B、D、E三點(diǎn)作⊙O.
(1)求證:AC是⊙O的切線(xiàn);
(2)設(shè)⊙O交BC于點(diǎn)F,連接EF,若BC=9,CA=12.求
EF
AC
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案