閱讀下列材料:若關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)實(shí)數(shù)根分別為x1,x2,則x1+x2=-
b
a
,x1x2=
c
a

解決下列問(wèn)題:
已知:a,b,c均為非零實(shí)數(shù),且a>b>c,關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)實(shí)數(shù)根,其中一根為2.
(1)填空:4a+2b+c
 
0,a
 
0,c
 
0;(填“>”,“<”或“=”)
(2)利用閱讀材料中的結(jié)論直接寫出方程ax2+bx+c=0的另一個(gè)實(shí)數(shù)根(用含a,c的代數(shù)式表示);
(3)若實(shí)數(shù)m使代數(shù)式am2+bm+c的值小于0,問(wèn):當(dāng)x=m+5時(shí),代數(shù)式ax2+bx+c的值是否為正數(shù)?寫出你的結(jié)論并說(shuō)明理由.
分析:(1)根據(jù)圖象可知拋物線開(kāi)口向上,所以得到a大于0,又拋物線與y軸的交點(diǎn)在y軸的負(fù)半軸得到c小于0,由方程ax2+bx+c=0有一根為2,得到拋物線與x軸的一個(gè)交點(diǎn)為(2,0),代入拋物線的解析式即可得到4a+2b+c=0;
(2)根據(jù)根與系數(shù)的關(guān)系得到兩根之積為
c
a
,而一根為2,即可求出另一根;
(3)根據(jù)第(2)表示出點(diǎn)A的坐標(biāo),又根據(jù)(1)中判斷出的a與c的正負(fù),根據(jù)二次函數(shù)的圖象可判斷出A在B的左側(cè),設(shè)出M點(diǎn)的坐標(biāo)為(m,am2+bm+c),則點(diǎn)N的坐標(biāo)為(m+5,y),根據(jù)二次函數(shù)圖象可知點(diǎn)M在x軸的下方的拋物線上,即可得到點(diǎn)A,點(diǎn)B以及點(diǎn)M橫坐標(biāo)的大小,把關(guān)于m的不等式兩邊都加上5,即可得到N的橫坐標(biāo)的范圍,然后利用做差法判斷出點(diǎn)N與點(diǎn)B橫坐標(biāo)的大小,得到兩點(diǎn)都在對(duì)稱軸的右邊,根據(jù)對(duì)稱軸右邊拋物線的圖象為增函數(shù),且x=2時(shí)的函數(shù)值為0,得到y(tǒng)大于0,即當(dāng)x=m+5時(shí),代數(shù)式ax2+bx+c的值為正數(shù).
解答:精英家教網(wǎng)解:(1)∵4a+2b+c=0,
∴a,b,c至少有一個(gè)為正,
∵a>b>c,
∴a>0,
①當(dāng)a>0,c>0時(shí)候,則b>0,所以4a+2b+c>0,與4a+2b+c=0矛盾,不合題意;
②當(dāng)a>0,c<0時(shí)候,所以4a+2b+c可能等于0,
∴a>0,c<0;
故答案為:=,>,<.

(2)由題意可知:x1x2=2x2=
c
a
,解得:另一根x2=
c
2a
;(4分)

(3)答:當(dāng)x=m+5時(shí),代數(shù)式ax2+bx+c的值是正數(shù).
理由如下:
設(shè)拋物線y=ax2+bx+c(a≠0),則由題意可知,它經(jīng)過(guò)A(
c
2a
,0)
,B(2,0)點(diǎn).
∵a>0,c<0,∴拋物線y=ax2+bx+c開(kāi)口向上,且
c
2a
<0<2,即點(diǎn)A在點(diǎn)B左側(cè).(5分)
設(shè)點(diǎn)M的坐標(biāo)為M(m,am2+bm+c),點(diǎn)N的坐標(biāo)為N(m+5,y).
∵代數(shù)式am2+bm+c的值小于0,∴點(diǎn)M在拋物線y=ax2+bx+c上,且點(diǎn)M的縱坐標(biāo)為負(fù)數(shù).
∴點(diǎn)M在x軸下方的拋物線上.(如圖)∴xA<xM<xB,即
c
2a
<m<2

c
2a
+5<m+5<7
,即
c
2a
+5<xN<7

以下判斷
c
2a
+5
與xB的大小關(guān)系:
∵4a+2b+c=0,a>b,a>0,
(
c
2a
+5)-xB=(
c
2a
+5)-2=
6a+c
2a
=
6a-(4a+2b)
2a
=
a-b
a
>0

c
2a
+5>xB
.∴xN
c
2a
+5>xB
.(6分)
∵B,N兩點(diǎn)都在拋物線的對(duì)稱軸的右側(cè),y隨x的增大而增大,
∴yN>yB,即y>0.
∴當(dāng)x=m+5時(shí),代數(shù)式ax2+bx+c的值是正數(shù).(7分)
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用閱讀材料中給出的根與系數(shù)的關(guān)系,考查了數(shù)形結(jié)合的數(shù)學(xué)思想,要求學(xué)生掌握二次函數(shù)的圖象與性質(zhì)并會(huì)根據(jù)二次函數(shù)的圖象判斷得出a、b及c的符號(hào),是一道多知識(shí)的綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料:
若關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)實(shí)數(shù)根分別為x1,x2,則x1+x2=-
b
a
,x1x2=
c
a

解決下列問(wèn)題:
已知:a,b,c均為非零實(shí)數(shù),且a>b>c,關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)實(shí)數(shù)根,其中一根為2.
(1)填空:4a+2b+c
=
=
0,a
0,c
0;(填“>”,“<”或“=”)
(2)利用閱讀材料中的結(jié)論直接寫出方程ax2+bx+c=0的另一個(gè)實(shí)數(shù)根(用含a,c的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料:若關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)實(shí)數(shù)根分別為x1、x2,則x1+x2=-
b
a
,x1x2=
c
a

解決下面問(wèn)題:已知關(guān)于x的一元二次方程(2x+n)2=4x有兩個(gè)非零不等實(shí)數(shù)根x1、x2,設(shè)m=
1
x1
+
1
x2

(1)求n的取值范圍;
(2)試用關(guān)于n的代數(shù)式表示出m;
(3)是否存在這樣的n值,使m的值等于1?若存在,求出這樣的所有n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(本題8分)閱讀下列材料:若關(guān)于的一元二次方程 的兩個(gè)實(shí)數(shù)根分別為、,則,
解決下面問(wèn)題:已知關(guān)于x的一元二次方程有兩個(gè)非零不等實(shí)數(shù)根、,設(shè).
【小題1】(1) 求的取值范圍;
【小題2】(2) 試用關(guān)于的代數(shù)式表示出;
【小題3】(3) 是否存在這樣的值,使的值等于1?若存在,求出這樣的所有的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年北京市西城區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

閱讀下列材料:若關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)實(shí)數(shù)根分別為x1,x2,則,
解決下列問(wèn)題:
已知:a,b,c均為非零實(shí)數(shù),且a>b>c,關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)實(shí)數(shù)根,其中一根為2.
(1)填空:4a+2b+c______0,a______0,c______0;(填“>”,“<”或“=”)
(2)利用閱讀材料中的結(jié)論直接寫出方程ax2+bx+c=0的另一個(gè)實(shí)數(shù)根(用含a,c的代數(shù)式表示);
(3)若實(shí)數(shù)m使代數(shù)式am2+bm+c的值小于0,問(wèn):當(dāng)x=m+5時(shí),代數(shù)式ax2+bx+c的值是否為正數(shù)?寫出你的結(jié)論并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案