如圖,是四邊形的對角線上兩點,

求證:(1);

(2)四邊形是平行四邊形.

 

【答案】

(1),

,

,

.  ………………………………………………4分

(2)由(1)知,

,

四邊形是平行四邊形   …………………………………………4分

【解析】(1)利用兩邊和它們的夾角對應相等的兩三角形全等(SAS),這一判定定理容易證明△AFD≌△CEB.

(2)由△AFD≌△CEB,容易證明AD=BC且AD∥BC,可根據(jù)一組對邊平行且相等的四邊形是平行四邊形.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

39、我們知道,平行四邊形的對角相等,其證明過程如下,請在每一步括號內(nèi)填寫理由.
已知:如圖,四邊形ABCD是平行四邊形.
求證:∠A=∠C,∠B=∠D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

圖1是只有一組對角為直角的四邊形(我們規(guī)定這一類四邊形的集合為M),連接它的兩個非直角頂點的線段叫做這個四邊形的“直徑”(相當于經(jīng)過這個四邊形的四個頂點的圓的直徑).
(1)識圖:如圖1,四邊形ABCD的直徑是線段
BD
BD
;
(2)判斷:如圖2,在坐標系中(網(wǎng)格小方格的單位長為1)的四邊形EFGH是否為M中的四邊形?給出簡要說明;
(3)思考、操作并解決問題:在圖2中找到一個點P,使四邊形EFPH為M中的四邊形,并且這個四邊形用一條直線分割成兩塊后可以拼成一個正方形.要求:寫出點P的坐標、畫出分割線,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在下面推理過程的括號內(nèi)填上推理的依據(jù)
已知,如圖所示,在?ABCD中,BF=DE.
求證:∠EAF=∠ECF
證明:∵四邊形ABCD是平行四邊形(
已知
已知

∴DC=AB(
平行四邊形的對邊相等
平行四邊形的對邊相等

DC∥AB(
平行四邊形的對邊相互平行
平行四邊形的對邊相互平行

又∵BF=DE(
已知
已知

∴AB-BF=DC-DE(
等量代換
等量代換

即AF=CE(
等量代換
等量代換

∴AF 
.
CE
∴四邊形AFCE是平行四邊形(
對邊平行且相等的四邊形是平行四邊形
對邊平行且相等的四邊形是平行四邊形

∴∠EAF=∠ECF(
平行四邊形的對角相等
平行四邊形的對角相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

讓我們一起來探索平面直角坐標系中平行四邊形的頂點的坐標之間的關系.
第一步:數(shù)軸上兩點連線的中點表示的數(shù).自己畫一個數(shù)軸,如果點A、B分別表示-2、4,則線段AB的中點M表示的數(shù)是
1
1
. 再試幾個,我們發(fā)現(xiàn):數(shù)軸上連接兩點的線段的中點所表示的數(shù)是這兩點所表示數(shù)的平均數(shù).
第二步;平面直角坐標系中兩點連線的中點的坐標(如圖①)為便于探索,我們在第一象限內(nèi)取兩點A(x1,y1),B(x2,y2),取線段AB的中點M,分別作A、B到x軸的垂線段AE、BF,取EF的中點N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結論及梯形中位線的性質(zhì),我們可以得到點M的坐標是(
x1+x2
2
x1+x2
2
,
y1+y2
2
y1+y2
2
 )(用x1,y1,x2,y2表示),AEFB是矩形時也可以.我們的結論是:平面直角坐標系中連接兩點的線段的中點的橫(縱)坐標等于這兩點的橫(縱)坐標的平均數(shù).
第三步:平面直角坐標系中平行四邊形的頂點坐標之間的關系(如圖②)在平面直角坐標系中畫一個平行四邊形ABCD,設A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),則其對角線交點Q的坐標可以表示為Q(
x1+x3
2
x1+x3
2
,
y1+y3
2
y1+y3
2
),也可以表示為Q(
x2+x4
2
x2+x4
2
y2+y4
2
y2+y4
2
 ),經(jīng)過比較,我們可以分別得出關于x1,x2,x3,x4及,y1,y2,y3,y4的兩個等式是
x1+x3=x2+x4
x1+x3=x2+x4
y1+y3=y2+y4
y1+y3=y2+y4
. 我們的結論是:平面直角坐標系中平行四邊形的對角頂點的橫(縱)坐標的
和相等
和相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

讓我們一起來探索平面直角坐標系中平行四邊形的頂點的坐標之間的關系。

第一步:數(shù)軸上兩點連線的中點表示的數(shù)

自己畫一個數(shù)軸,如果點A、B分別表示-2、4,則線段AB的中點M表示的數(shù)是                。 再試幾個,我們發(fā)現(xiàn):

數(shù)軸上連結兩點的線段的中點所表示的數(shù)是這兩點所表示數(shù)的平均數(shù)。

第二步;平面直角坐標系中兩點連線的中點的坐標(如圖①)

為便于探索,我們在第一象限內(nèi)取兩點A(x1,y1),B(x2,y2),取線段AB的中點M,分別作A、B到x軸的垂線段AE、BF,取EF的中點N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結論及梯形中位線的性質(zhì),我們可以得到點M的坐標是(             ,                     )(用x1,y1,x2,y2表示),AEFB是矩形時也可以。我們的結論是:平面直角坐標系中連結兩點的線段的中點的橫(縱)坐標等于這兩點的橫(縱)坐標的平均數(shù)。

      

          圖①                    圖②

第三步:平面直角坐標系中平行四邊形的頂點坐標之間的關系(如圖②)

在平面直角坐標系中畫一個平行四邊形ABCD,設A(x1,y1),B(x2,y2),C(x3,y3),

D(x4,y4),則其對角線交點Q的坐標可以表示為Q(           ,         ),也可以表示為Q(             ,          ),經(jīng)過比較,我們可以分別得出關于x1,x2,x3,x4及,y1,y2,y3,y4的兩個等式是                                      。 我們的結論是:平面直角坐標系中平行四邊形的對角頂點的橫(縱)坐標的              。

 

 

查看答案和解析>>

同步練習冊答案