【題目】如圖,EF∥CD,∠1+∠2=180°.
(1)判斷DG與AC的位置關(guān)系,并說明理由;
(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度數(shù).
【答案】(1)AC∥DG.理由見解析;(2)80°
【解析】
(1)根據(jù)平行線的性質(zhì)即可得出∠1+∠ACD=180°,再根據(jù)條件∠1+∠2=180°,即可得到∠ACD=∠2,進而判定AC∥DG.
(2)根據(jù)平行線的性質(zhì),得到∠BDG=∠A=40°,根據(jù)三角形外角性質(zhì),即可得到∠ACD=∠BDC-∠A=40°,再根據(jù)角平分線的定義,即可得出∠ACB的度數(shù).
(1)AC∥DG.
理由:∵EF∥CD,
∴∠1+∠ACD=180°,
又∵∠1+∠2=180°,
∴∠ACD=∠2,
∴AC∥DG.
(2)∵AC∥DG,
∴∠BDG=∠A=40°,
∵DG平分∠CDB,
∴∠CDB=2∠BDG=80°,
∵∠BDC是△ACD的外角,
∴∠ACD=∠BDC-∠A=80°-40°=40°,
∵CD平分∠ACB,
∴∠ACB=2∠ACD=80°.
科目:初中數(shù)學 來源: 題型:
【題目】某手機專營店代理銷售A、B兩種型號手機.手機的進價、售價如下表:
型號 | A | B |
進價 | 1800元/部 | 1500元/部 |
售價 | 2070元/部 | 1800元/部 |
(1)第一個月:用54000元購進A、B兩種型號的手機,全部售完后獲利9450元,求第一個月購進A、B兩種型號手機的數(shù)量;
(2)第二個月:計劃購進A、B兩種型號手機共34部,且不超出第一個月購進A、B兩種型號的手機總費用,則A型號手機最多能購多少部?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,若P,Q為某個菱形相鄰的兩個頂點,且該菱形的兩條對角線分別與x軸,y軸平行,則稱該菱形為點P,Q的“相關(guān)菱形”.圖1為點P,Q的“相關(guān)菱形”的一個示意圖.
已知點A的坐標為(1,4),點B的坐標為(b,0),
(1)若b=3,則R(﹣1,0),S(5,4),T(6,4)中能夠成為點A,B的“相關(guān)菱形”頂點的是;
(2)若點A,B的“相關(guān)菱形”為正方形,求b的值;
(3)⊙B的半徑為 ,點C的坐標為(2,4).若⊙B上存在點M,在線段AC上存在點N,使點M,N的“相關(guān)菱形”為正方形,請直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程3x2﹣kx+k﹣4=0.
(1)判斷方程根的情況;
(2)若此方程有一個整數(shù)根,請選擇一個合適的k值,并求出此時方程的根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩支籃球隊進行了5場比賽,比賽成績繪制成了統(tǒng)計圖(如圖)
(1)分別計算甲乙兩隊5場比賽成績的平均分.
(2)就這5場比賽,分別計算兩隊成績的極差;
(3)就這5場比賽,分別計算兩隊成績的方差;
(4)如果從兩隊中選派一支球隊參加籃球錦標賽,根據(jù)上述統(tǒng)計,從平均分、極差、方差以及獲勝場數(shù)這四個方面分別進行簡要分析,你認為選派哪支球隊參賽更能取得好成績?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料: 由于發(fā)展時間早、發(fā)展速度快,經(jīng)過20多年大規(guī)模的高速開發(fā)建設(shè),北京四環(huán)內(nèi),甚至五環(huán)內(nèi)可供開發(fā)建設(shè)的土地資源越來越稀缺,更多的土地供應(yīng)將集中在五環(huán)外,甚至六環(huán)外的遠郊區(qū)縣.
據(jù)中國經(jīng)濟網(wǎng)2017年2月報道,來自某市場研究院的最新統(tǒng)計,2016年,剔除了保障房后,在北京新建商品住宅交易量整體上漲之時,北京各區(qū)域的新建商品住宅交易量則是有漲有跌.其中,昌平、通州、海淀、朝陽、西城、東城六區(qū)下跌,跌幅最大的為朝陽區(qū),新建商品住宅成交量比2015年下降了46.82%.而延慶、密云、懷柔、平谷、門頭溝、房山、順義、大興、石景山、豐臺十區(qū)的新建商品住宅成交量表現(xiàn)為上漲,漲幅最大的為順義區(qū),比2015年上漲了118.80%.另外,從環(huán)線成交量的占比數(shù)據(jù)上,同樣可以看出成交日趨郊區(qū)化的趨勢.根據(jù)統(tǒng)計,2008年到2016年,北京全市成交的新建商品住宅中,二環(huán)以內(nèi)的占比逐步從3.0%下降到了0.2%;二、三環(huán)之間的占比從5.7%下降到了0.8%;三、四環(huán)之間的占比從12.3%下降到了2.3%;四、五環(huán)之間的占比從21.9%下降到了4.4%.也就是說,整體成交中位于五環(huán)之內(nèi)的新房占比,從2008年的42.8%下降到了2016年的7.7%,下滑趨勢非常明顯.由此可見,新房市場的遠郊化是北京房地產(chǎn)市場發(fā)展的大勢所趨.(注:占比,指在總數(shù)中所占的比重,常用百分比表示)
根據(jù)以上材料解答下列問題:
(1)補全折線統(tǒng)計圖;
(2)根據(jù)材料提供的信息,預估 2017年位于北京市五環(huán)之內(nèi)新建商品住宅成交量占比約 , 你的預估理由是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為5的正方形ABCD中,點E,F(xiàn)分別是BC,DC邊上的兩個動點(不與點B,C,D重合),且AE⊥EF.
(1)如圖1,當BE=2時,求FC的長;
(2)延長EF交正方形ABCD外角平分線CP于點P.
①依題意將圖2補全;
②小京通過觀察、實驗提出猜想:在點E運動的過程中,始終有AE=PE.小京把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的三種想法:
想法1:在AB上截取AG=EC,連接EG,要證AE=PE,需證△AGE≌△ECP.
想法2:作點A關(guān)于BC的對稱點H,連接BH,CH,EH.要證AE=PE,需證△EHP為等腰三角形.
想法3:將線段BE繞點B順時針旋轉(zhuǎn)90°,得到線段BM,連接CM,EM,要證AE=PE,需證四邊形MCPE為平行四邊形.
請你參考上面的想法,幫助小京證明AE=PE.(一種方法即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC是等邊三角形,點D是直線BC上一點,以AD為一邊在AD的右側(cè)作等邊△ADE.
(1)如圖①,點D在線段BC上移動時,直接寫出∠BAD和∠CAE的大小關(guān)系;
(2)如圖②,點D在線段BC的延長線上移動時,猜想∠DCE的大小是否發(fā)生變化.若不變請求出其大;若變化,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com