如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)點(diǎn)A(1,0)、B(3,0)、C(0,3).
(1)試求出拋物線的解析式;
(2)問(wèn):在拋物線的對(duì)稱軸上是否存在一個(gè)點(diǎn)Q,使得△QAC的周長(zhǎng)最小,試求出△QAC的周長(zhǎng)的最小值,并求出點(diǎn)Q的坐標(biāo);
(3)現(xiàn)有一個(gè)動(dòng)點(diǎn)P從拋物線的頂點(diǎn)T出發(fā),在對(duì)稱軸上以1個(gè)單位長(zhǎng)度每秒的速度向y軸的正方向運(yùn)動(dòng),試問(wèn),經(jīng)過(guò)幾秒后,△PAC是等腰三角形?
(1)∵拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)點(diǎn)A(1,0)、B(3,0)、C(0,3),
∴把此三點(diǎn)代入得
a+b+c=0
9a+3b+c=0
c=3
,
解得
a=1
b=-4
c=3
,
故拋物線的解析式為,y=x2-4x+3;

(2)點(diǎn)A關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)即為點(diǎn)B,
連接B、C,交x=2于點(diǎn)Q,
可得直線BC:
y=-x+3,與對(duì)稱軸交點(diǎn)Q(2,1),BC=3
2
,
可得△QAC周長(zhǎng)為
10
+3
2


(3)設(shè)t秒后△PAC是等腰三角形,
因?yàn)镻在對(duì)稱軸上,
所以P點(diǎn)坐標(biāo)為(2,t-1)于是
①當(dāng)PA=CA時(shí);根據(jù)勾股定理得:(2-1)2+(t-1)2=12+32;
解得t=4秒或t=-2秒(負(fù)值舍去).
②PC=PA時(shí);根據(jù)勾股定理得:22+(t-4)2=(2-1)2+(t-1)2;
解得t=3秒;
③CP=CA時(shí);根據(jù)勾股定理得:22+(t-4)2=12+32
解得t=(4+
6
)秒或t=(4-
6
)秒
所以經(jīng)過(guò)4秒,或3秒,或4+
6
秒,或4-
6
秒時(shí),△PAC是等腰三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,拋物線y1=a(x+2)2-3y2=
1
2
(x-3)2+1
交于點(diǎn)A(1,3)過(guò)點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B、C,則以下結(jié)論:
①無(wú)論x取何值,y2的值總是正數(shù);②a=
2
3
;③當(dāng)x=0時(shí),y2-y1=4;④2AB=3AC;
其中,結(jié)論正確的是______(填寫序號(hào)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線經(jīng)過(guò)A(-1,0),B(0,-2),C(1,-2),且與x軸的另一個(gè)交點(diǎn)為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點(diǎn)D的坐標(biāo)和對(duì)稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若拋物線y=x2-(2m+4)+m2-10與x軸交于A(x1,0),B(x2,0).頂點(diǎn)為C.
(1)求m的范圍;
(2)若AB=2
2
,求拋物線的解析式;
(3)若△ABC為等邊三角形,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,二次函數(shù)y=ax2+bx的圖象經(jīng)過(guò)點(diǎn)A(-5,0)和點(diǎn)B,其中點(diǎn)B在第一象限,且OA=OB,cot∠BAO=2.
(1)求點(diǎn)B的坐標(biāo);
(2)求二次函數(shù)的解析式;
(3)過(guò)點(diǎn)B作直線BC平行于x軸,直線BC與二次函數(shù)圖象的另一個(gè)交點(diǎn)為C,聯(lián)結(jié)AC,如果點(diǎn)P在x軸上,且△ABC和△PAB相似,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖是我省某地一座拋物線形拱橋,橋拱在豎直平面內(nèi),與水平橋面相交于A,B兩點(diǎn),拱橋最高點(diǎn)C到AB的距離為9m,AB=36m,D,E為拱橋底部的兩點(diǎn),且DEAB,點(diǎn)E到直線AB的距離為7m,則DE的長(zhǎng)為_(kāi)_____m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:拋物線y=ax2+4ax+t與x軸的一個(gè)交點(diǎn)為A(-1,0),另一個(gè)交點(diǎn)為B.
(1)求點(diǎn)B的坐標(biāo);
(2)D是拋物線與y軸的交點(diǎn),C是拋物線上的一點(diǎn),且以AB為一底的梯形ABCD的面積為9,求此拋物線的解析式;
(3)已知直線y=k與拋物線不相交,且拋物線上任意一點(diǎn)到這條直線的距離與這一點(diǎn)到點(diǎn)F(-2,-
3
4
a
)的距離相等,則k的值為_(kāi)_____.(直接寫答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx經(jīng)過(guò)B(8、0),C(6、2
3
)兩點(diǎn),點(diǎn)A是點(diǎn)C關(guān)于拋物線y=ax2+bx的對(duì)稱軸的對(duì)稱點(diǎn),連接OA、AC、BC

(1)求拋物線的解析式.
(2)動(dòng)點(diǎn)E從點(diǎn)O出發(fā),速度為3個(gè)單位/秒,沿O→A→C勻速運(yùn)動(dòng):動(dòng)點(diǎn)F從點(diǎn)O出發(fā),速度為4個(gè)單位/秒,沿O→B勻速運(yùn)動(dòng),動(dòng)點(diǎn)E、F同時(shí)出發(fā),若設(shè)運(yùn)動(dòng)時(shí)間為t秒(0≤t≤2),△OEF的面積為S,請(qǐng)求出運(yùn)動(dòng)過(guò)程中S與t的關(guān)系式.
(3)設(shè)P是拋物線對(duì)稱軸上的一點(diǎn),是否存在點(diǎn)P使以O(shè)、E、F、P為頂點(diǎn)的四邊形是平行四邊形?若不存在,請(qǐng)說(shuō)明理由;若存在,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商店經(jīng)營(yíng)一批進(jìn)價(jià)每件為2元的小商品,在市場(chǎng)營(yíng)銷的過(guò)程中發(fā)現(xiàn):如果該商品按每件最低價(jià)3元銷售,日銷售量為18件,如果單價(jià)每提高1元,日銷售量就減少2件.設(shè)銷售單價(jià)為x(元),日銷售量為y(件).
(1)寫出日銷售量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)設(shè)日銷售的毛利潤(rùn)(毛利潤(rùn)=銷售總額-總進(jìn)價(jià))為P(元),求出毛利潤(rùn)P(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(3)在下圖所示的坐標(biāo)系中畫出P關(guān)于x的函數(shù)圖象的草圖,并標(biāo)出頂點(diǎn)的坐標(biāo);
(4)觀察圖象,說(shuō)出當(dāng)銷售單價(jià)為多少元時(shí),日銷售的毛利潤(rùn)最高是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案