(2012•河?xùn)|區(qū)一模)若3<x<4,則x可以是(  )
分析:按要求找到3到4之間的無理數(shù)須使被開方數(shù)大于9小于16即可求解.
解答:解:∵3<x<4,
∴32<x2<42,即9<x2<16,
9
<x<
16

故選B.
點(diǎn)評:此題主要考查了無理數(shù)的大小估算,現(xiàn)實(shí)生活中經(jīng)常需要估算,估算應(yīng)是我們具備的數(shù)學(xué)能力,“夾逼法”是估算的一般方法,也是常用方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河?xùn)|區(qū)一模)tan30°=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河?xùn)|區(qū)一模)下列商標(biāo)圖案,既是軸對稱圖形,又是中心對稱圖形的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河?xùn)|區(qū)一模)袋子中裝有2個紅球和3個白球,這些球除顏色外完全相同.在看不到球的條件下,隨機(jī)從袋中摸出一個球,則摸出白球的概率是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河?xùn)|區(qū)一模)如圖,拋物線C:y=ax2+bx+3與x軸的兩個交點(diǎn)坐標(biāo)為A(-3,0),B(-1,0).
(Ⅰ)求拋物線C的解析式;
(Ⅱ)設(shè)拋物線C的頂點(diǎn)為M,直線y=-2x+9與y軸交于點(diǎn)E,交直線OM于點(diǎn)F.現(xiàn)保持拋物線C的形狀和開口方向,使頂點(diǎn)沿直線OM移動(O為坐標(biāo)原點(diǎn)).在平移過程中,當(dāng)拋物線與射線EF(含端點(diǎn)E、F)只有一個公共點(diǎn)時(shí),求它的頂點(diǎn)橫坐標(biāo)的值或取值范圍;
(Ⅲ)將拋物線平移,當(dāng)頂點(diǎn)至原點(diǎn)時(shí),過Q(0,3)作不平行于x軸的直線交拋物線于M,N兩點(diǎn).問在y軸的負(fù)半軸上是否存在點(diǎn)P,使△PMN的內(nèi)心在y軸上?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案