如圖1所示,已知:在矩形ABCD中,AB=6,點P在AD邊上.
(1)如果∠BPC=90°,求證:△ABP∽△DPC;
(2)在問題(1)中,當AD=13時,求tan∠PBC;
(3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點,過點M作MN∥BC交PC于點N,分別過點M,N作ME⊥BC于點E,NF⊥BC于點F,并且矩形MEFN和矩形ABCD的長與寬之比相等,求MN.
精英家教網(wǎng)
分析:(1)若∠BPC=90°,則∠BPA和∠PCD同為∠DPC的余角,故∠BPA=∠PCD,而∠A、∠D都是直角,由此可證得:△ABP∽△DPC.
(2)由于AD∥BC,則∠PBC=∠APB,那么只需求出∠APB的正切值即可,關鍵是求AP的長;可設AP為x,用x可表示出DP的長,根據(jù)(1)所得相似三角形的比例線段,即可求得x即AP的值,進而可得到∠APB的正切值,由此得解.
(3)易得AB、AD的長,即可得到矩形的長和寬的比例關系,若設ME=x,則MN=2ME=2x,可過P作BC的垂線,設垂足為H,交MN于G;那么PG=6-x,易證得△PMN∽△PBC,根據(jù)相似三角形的對應邊成比例,即可求得x的值,進而可求出MN的長.(當ME=2MN時,方法同上).
解答:精英家教網(wǎng)(1)證明:∵∠BPC=90°,∠D=90°,
∴∠BPA+∠DPC=∠PCD+∠DPC=90°,
∴∠APB=∠PCD;
又∵∠A=∠D=90°,
∴△ABP∽△DPC.

(2)解:設AP=x,則PD=AD-AP=13-x;
由(1)知:△ABP∽△DPC,得:
AP
CD
=
AB
DP
,即
x
6
=
6
13-x
,化簡得:
x2-13x+36=0,解得x=4,x=9;
在Rt△APB中,當AP=4時,tan∠APB=
AB
AP
=
3
2
;
當AP=9時,tan∠APB=
AB
AP
=
6
9
=
2
3

由于AD∥BC,則∠APB=∠PBC,
故∠PBC的正切值為
2
3
3
2


(3)解:過P作PH⊥BC于H,交MN于G,則PG⊥MN;
由題意知:AB=6,AD=AP+PD=12,即AD=2AB;
①當MN=2ME時,設ME=x,則MN=2x,PG=6-x;
由于MN∥BC,則△PMN∽△PBC,得:
PG
PH
=
MN
BC
,即
6-x
6
=
2x
12
;
解得:x=3,故MN=2x=6;
②當ME=2MN時,設MN=m,則ME=2m,PG=6-2m,同①可得:
PG
PH
=
MN
BC
,即
6-2m
6
=
m
12
;
解得:m=2.4,即MN=2.4;
綜上所述,MN的值為6或2.4.
點評:此題重點考查的是相似三角形的判定和性質(zhì),涉及到的知識點有:矩形的性質(zhì)、銳角三角函數(shù)等知識;本題難度雖然不大,但關鍵在于(2)(3)題都要把各種情況考慮到,以免漏解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

如圖1所示,已知:在矩形ABCD中,AB=6,點P在AD邊上.
(1)如果∠BPC=90°,求證:△ABP∽△DPC;
(2)在問題(1)中,當AD=13時,求tan∠PBC;
(3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點,過點M作MN∥BC交PC于點N,分別過點M,N作ME⊥BC于點E,NF⊥BC于點F,并且矩形MEFN和矩形ABCD的長與寬之比相等,求MN.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年江蘇省宿遷市沭陽國際學校中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

如圖1所示,已知:在矩形ABCD中,AB=6,點P在AD邊上.
(1)如果∠BPC=90°,求證:△ABP∽△DPC;
(2)在問題(1)中,當AD=13時,求tan∠PBC;
(3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點,過點M作MN∥BC交PC于點N,分別過點M,N作ME⊥BC于點E,NF⊥BC于點F,并且矩形MEFN和矩形ABCD的長與寬之比相等,求MN.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年廣東省廣州市從化市中考數(shù)學一模試卷(解析版) 題型:解答題

如圖1所示,已知:在矩形ABCD中,AB=6,點P在AD邊上.
(1)如果∠BPC=90°,求證:△ABP∽△DPC;
(2)在問題(1)中,當AD=13時,求tan∠PBC;
(3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點,過點M作MN∥BC交PC于點N,分別過點M,N作ME⊥BC于點E,NF⊥BC于點F,并且矩形MEFN和矩形ABCD的長與寬之比相等,求MN.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年福建省南平市初中畢業(yè)綜合測試(解析版) 題型:解答題

(2010•南平模擬)如圖1所示,已知:在矩形ABCD中,AB=6,點P在AD邊上.
(1)如果∠BPC=90°,求證:△ABP∽△DPC;
(2)在問題(1)中,當AD=13時,求tan∠PBC;
(3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點,過點M作MN∥BC交PC于點N,分別過點M,N作ME⊥BC于點E,NF⊥BC于點F,并且矩形MEFN和矩形ABCD的長與寬之比相等,求MN.

查看答案和解析>>

同步練習冊答案