如圖,不能與圖關(guān)于某條直線成軸對稱的圖形是( 。
分析:根據(jù)軸對稱圖形的定義,對各選項(xiàng)的圖形結(jié)合原題圖形分別找出對稱軸即可作出判斷.
解答:解:如圖,A、可以沿直線b成軸對稱,故本選項(xiàng)正確;
B、不能找出任何對稱軸對稱,故本選項(xiàng)錯誤;
C、可以沿直線a成軸對稱,故本選項(xiàng)正確;
D、可以沿直線c成軸對稱,故本選項(xiàng)正確.
故選B.
點(diǎn)評:本題考查了軸對稱圖形的定義,觀察圖形,找出對稱軸是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

現(xiàn)有邊長為180厘米的正方形鐵皮,準(zhǔn)備將它設(shè)計并制成一個開口的水槽,使水槽能通過的水的流量最大.
某校九年級(2)班數(shù)學(xué)興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面,進(jìn)行了如下探索:
(1)方案①:把它折成橫截面為矩形的水槽,如圖.
若∠ABC=90°,設(shè)BC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當(dāng)x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽,如圖.
若∠ABC=1 20°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大。
(2)假如你是該興趣小組中的成員,請你再提供一種方案,使你所設(shè)計的水槽的橫截面精英家教網(wǎng)面積更大.畫出你設(shè)計的草圖,標(biāo)上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2-2ax+b經(jīng)過A(-2,0),C(2,8)兩點(diǎn),與y軸交于點(diǎn)D,與x軸交于另一點(diǎn)B.點(diǎn)E坐標(biāo)為(0,-2),點(diǎn)P是線段BO上的一個動點(diǎn),從點(diǎn)B開始以1個單位每秒的速度沿BO向終點(diǎn)O運(yùn)動;

(1)求此拋物線的解析式;
(2)設(shè)運(yùn)動時間為t秒,直線PE掃過四邊形ABCD的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)能否將△OEB繞平面內(nèi)某點(diǎn)旋轉(zhuǎn)90°后使得△OEB的兩個頂點(diǎn)落在拋物線上?若能,請直接寫出旋轉(zhuǎn)中心的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2-2ax+b經(jīng)過A(-2,0),C(2,8)兩點(diǎn),與y軸交于點(diǎn)D,與x軸交于另一點(diǎn)B.點(diǎn)E坐標(biāo)為(0,-2),點(diǎn)P是線段BO上的一個動點(diǎn),從點(diǎn)B開始以1個單位每秒的速度沿BO向終點(diǎn)O運(yùn)動;

(1)求此拋物線的解析式;
(2)設(shè)運(yùn)動時間為t秒,直線PE掃過四邊形ABCD的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)能否將△OEB繞平面內(nèi)某點(diǎn)旋轉(zhuǎn)90°后使得△OEB的兩個頂點(diǎn)落在拋物線上?若能,請直接寫出旋轉(zhuǎn)中心的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,不能與圖關(guān)于某條直線成軸對稱的圖形是


  1. A.
  2. B.
  3. C.
  4. D.

查看答案和解析>>

同步練習(xí)冊答案