(12分)如圖,在平面直角坐標(biāo)系中,拋物線向左平移1個(gè)單位,再向下平移4個(gè)單位,得到拋物線.所得拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),與軸交于點(diǎn),頂點(diǎn)為.

(1)求的值;

(2)求直線AC的函數(shù)解析式。

(3)在線段上是否存在點(diǎn),使相似.若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

 

 

 

 

 

 

 

【答案】

 

(1)的頂點(diǎn)坐標(biāo)為(0,0),

的頂點(diǎn)坐標(biāo),

.······························ 3分

(2)由(1)得.

當(dāng)時(shí),

.

.

.····························· 4分

當(dāng)時(shí),

點(diǎn)坐標(biāo)為.

設(shè)直線AC的函數(shù)解析式為y=kx+b,于是

故所求直線AC的函數(shù)解析式為y =··················· 7分

(3)存在.

由(2)知,為等腰直角三角形,,

連接,過點(diǎn)作于點(diǎn),

.

①若,則

,即.

,

.

,

.

點(diǎn)在第三象限,

.····························· 10分

②若,則

,即.

,

.

點(diǎn)在第三象限,

.

綜上①、②所述,存在點(diǎn)使相似,且這樣的點(diǎn)有兩個(gè),其坐標(biāo)分別為.   12分

 

 

 【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案