如圖,AC∥BD,AE平分∠BAC交BD于點(diǎn)E,若∠1=56°,則∠2=
118
118
°.
分析:先根據(jù)兩角互補(bǔ)的性質(zhì)求出∠BAC的度數(shù),再根據(jù)角平分線的性質(zhì)得出∠CAE的度數(shù),由平行線的性質(zhì)∠2的度數(shù).
解答:解:∵∠1+∠BAC=180°,
∴∠BAC=180°-∠1=180°-56°=124°,
∵AE平分∠BAC交BD于點(diǎn)E,
∴∠CAE=
1
2
∠BAC=
1
2
×124°=62°,
∵AC∥BD,
∴∠2=180°-∠CAE=180°-62°=118°.
故答案為:118°.
點(diǎn)評(píng):本題考查的是平行線的性質(zhì)及角平分線的定義,用到的知識(shí)點(diǎn)為:兩直線平行,同旁內(nèi)角互補(bǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,AC=BD,要使△ABC≌△DCB,只要添加一個(gè)條件
AB=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•金臺(tái)區(qū)一模)如圖,AC∥BD,AE平分∠BAC交BD于點(diǎn)E.若∠1=68°,則∠2=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,AC=BD,AD⊥AC,BD⊥BC,求證:AD=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AC∥BD,∠A=60°,∠C=62°,則∠2=
60°
60°
,∠3=
62°
62°
,∠1=
58°
58°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AC∥BD,折線AMB夾在兩條平行線間.
(1)判斷∠M,∠A,∠B的關(guān)系;
(2)請(qǐng)你嘗試改變問題中的某些條件,探索相應(yīng)的結(jié)論.
建議:①折線中折線段數(shù)量增加到n條(n=3,4,…);
②可如圖①,圖②,或M點(diǎn)在平行線外側(cè).

查看答案和解析>>

同步練習(xí)冊(cè)答案