【題目】某校舉行漢字聽寫比賽,每位學(xué)生聽寫漢字39個,比賽結(jié)束后隨機抽查部分學(xué)生的聽寫結(jié)果,以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計圖的一部分.

組別

正確字數(shù)x

人數(shù)

A

0≤x8

10

B

8≤x16

15

C

16≤x24

25

D

24≤x32

m

E

32≤x40

n

根據(jù)以上信息解決下列問題:

1)在統(tǒng)計表中,m= ,n= ,并補全條形統(tǒng)計圖.

2)扇形統(tǒng)計圖中“C所對應(yīng)的圓心角的度數(shù)是

3)若該校共有900名學(xué)生,如果聽寫正確的個數(shù)少于24個定為不合格,請你估計這所學(xué)校本次比賽聽寫不合格的學(xué)生人數(shù).

【答案】130,20;(290°;(3450

【解析】試題分析:(1)根據(jù)條形圖和扇形圖確定B組的人數(shù)環(huán)繞所占的百分比求出樣本容量,求出m、n的值;

2)求出C所占的百分比,得到所對應(yīng)的圓心角的度數(shù);

3)求出不合格人數(shù)所占的百分比,求出該校本次聽寫比賽不合格的學(xué)生人數(shù).

試題解析:(1)從條形圖可知,B組有15人,

從扇形圖可知,B組所占的百分比是15%,D組所占的百分比是30%,E組所占的百分比是20%,

15÷15%=100

100×30%=30,

100×20%=20,

∴m=30,n=20.

故答案為:30;20

統(tǒng)計圖如下:

2“C所對應(yīng)的圓心角的度數(shù)是25÷100×360°=90°.

故答案為:90°;

3)估計這所學(xué)校本次聽寫比賽不合格的學(xué)生人數(shù)為:900×10%+15%+25%=450人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=12,AD=8,∠ABC的平分線交CD于點F,交AD的延長線于點E,CG⊥BE,垂足為G,若EF=2,則線段CG的長為( )

A.
B.4
C.2
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點E,AF∥CE,且交BC于點F.
(1)求證:△ABF≌△CDE;
(2)如圖,若∠1=65°,求∠B的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面實數(shù)比較大小正確的是( )
A.3>|﹣7|
B. >3
C.0<﹣2
D.( 2<31

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△DEF都是等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點E與△ABC的斜邊BC的中點重合.將△DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點P,射線EF與線段AB相交于點G,與射線CA相交于點Q.

(1)求證:△BPE∽△CEQ;
(2)求證:DP平分∠BPQ;
(3)當BP=a,CQ= a,求PQ長(用含a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按圖填空,并注明理由.

已知: 如圖,∠1=2,∠3=E 求證:ADBE

證明: ∵∠1=2 (已知)

BD

E =

E=3 已知

3=

ADBE.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的1號教學(xué)大樓共有4道門,其中兩道正門大小相同,兩道側(cè)門也大小相同,安全檢查時,對4道門進行了測試,當同時開啟一道正門和兩道側(cè)門時,2分鐘內(nèi)可以通過560名學(xué)生,當同時開啟一道正門和一道側(cè)門時,4分鐘內(nèi)可通過800名學(xué)生.

1)求平均每分鐘一道正門和一道側(cè)門各可以通過多少名學(xué)生?

2)該中學(xué)的2號教學(xué)大樓,有和1號教學(xué)大樓相同的正門和側(cè)門共5道,若這棟大樓的教室里最多有1920名學(xué)生,安全檢查規(guī)定,在緊急情況下,全大樓學(xué)生應(yīng)在4分鐘內(nèi)通過這5道門安全撤離,該棟大樓正門和側(cè)門各有幾道?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=BC,BEAC于點E,ADBC于點D,BAD=45°,AD與BE交于點F,連接CF.

(1)求證:BF=2AE;

(2)若CD=,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABEGx軸,BCDEHGAPy軸,點DC、PHx軸上,A(12),B(12),D(3,0),E(3,﹣2),G(3,﹣2),把一條長為2018個單位長度且沒有彈性的細線線的粗細忽略不計)的一端固定在點A處,并按ABCDEFGH﹣﹣PA…的規(guī)律緊繞在圖形“凸”的邊上,則細線另一端所在位置的點的坐標是(  )

A. (12)B. (1,2)C. (10)D. (1,0)

查看答案和解析>>

同步練習(xí)冊答案