已知,如圖,BC是以線段AB為直徑的⊙O的切線,AC交⊙O于點D,過點D作弦DE⊥AB,垂足為點F,連接BD、BE.

(1)仔細觀察圖形并寫出四個不同的正確結(jié)論:

①________,

②________,

③________,

④________(不添加其他字母和輔助線,不必證明);

(2)∠A=30°,CD=,求⊙O的半徑r.

答案:
解析:

  解:(1)答案不唯一,如BC⊥AB,AD⊥BD,DF=FE,BD=BE,△BDF≌△BEF,△BDF∽△BAD,∠BDF=∠BEF,∠A=∠E,DE∥BC等.

  (2)因為AB是⊙O的直徑,

  所以∠ADB=90°.

  又因為∠A=30°.

  所以BD=AB=r.

  又因為BC是⊙O的切線,

  所以∠CBA=90°.

  所以∠C=60°.

  在Rt△BCD中,CD=

  所以=tan60°.

  所以r=2.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,BC是以線段AB為直徑的⊙O的切線,AC交⊙O于點D,過點D作弦DE⊥AB,垂足為點精英家教網(wǎng)F,連接BD、BE.
(1)仔細觀察圖形并寫出四個不同的正確結(jié)論:①
 
,②
 
,③
 
,④
 
(不添加其它字母和輔助線,不必證明);
(2)∠A=30°,CD=
2
3
3
,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,如圖,BC是以線段AB為直徑的⊙O的切線,AC交⊙O于點D,過點D作弦DE⊥AB,垂足為點F,連接BD、BE.
(1)仔細觀察圖形并寫出四個不同的正確結(jié)論:①,②,③,④(不添加其它字母和輔助線,不必證明);
(2)∠A=30°,CD=數(shù)學(xué)公式,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《圓》中考題集(40):3.5 直線和圓的位置關(guān)系(解析版) 題型:解答題

已知,如圖,BC是以線段AB為直徑的⊙O的切線,AC交⊙O于點D,過點D作弦DE⊥AB,垂足為點F,連接BD、BE.
(1)仔細觀察圖形并寫出四個不同的正確結(jié)論:①______,②______,③______,④______(不添加其它字母和輔助線,不必證明);
(2)∠A=30°,CD=,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第24章《圓》?碱}集(19):24.2 點、直線和圓的位置關(guān)系(解析版) 題型:解答題

已知,如圖,BC是以線段AB為直徑的⊙O的切線,AC交⊙O于點D,過點D作弦DE⊥AB,垂足為點F,連接BD、BE.
(1)仔細觀察圖形并寫出四個不同的正確結(jié)論:①______,②______,③______,④______(不添加其它字母和輔助線,不必證明);
(2)∠A=30°,CD=,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣東省實驗中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知,如圖,BC是以線段AB為直徑的⊙O的切線,AC交⊙O于點D,過點D作弦DE⊥AB,垂足為點F,連接BD、BE.
(1)仔細觀察圖形并寫出四個不同的正確結(jié)論:①______,②______,③______,④______(不添加其它字母和輔助線,不必證明);
(2)∠A=30°,CD=,求⊙O的半徑r.

查看答案和解析>>

同步練習(xí)冊答案