【題目】在矩形ABCD中,AB6,AD8,點E是邊AD上一點,EMBCAB于點M,點N在射線MB上,且AEAMAN的比例中項.

1)如圖1,求證:∠ANE=∠DCE

2)如圖2,當點N在線段MB之間,聯(lián)結AC,且ACNE互相垂直,求MN的長;

3)連接AC,如果AEC與以點E、MN為頂點所組成的三角形相似,求DE的長.

【答案】1)見解析;(2;(3DE的長分別為3

【解析】

(1)由比例中項知,據(jù)此可證AME∽△AEN得∠AEM=∠ANE,再證∠AEM=∠DCE可得答案;

(2)先證∠ANE=∠EAC,結合∠ANE=∠DCE得∠DCE=∠EAC,從而知,據(jù)此求得AE=8﹣,由(1)得∠AEM=∠DCE,據(jù)此知,求得AM,由求得MN

(3)分∠ENM=∠EAC和∠ENM=∠ECA兩種情況分別求解可得.

解:(1)∵AEAMAN的比例中項

,

∵∠A=∠A,

∴△AME∽△AEN,

∴∠AEM=∠ANE,

∵∠D=90°

∴∠DCE+∠DEC=90°,

EMBC,

∴∠AEM+∠DEC=90°

∴∠AEM=∠DCE,

∴∠ANE=∠DCE;

(2)∵ACNE互相垂直,

∴∠EAC+∠AEN=90°,

∵∠BAC=90°,

∴∠ANE+∠AEN=90°

∴∠ANE=∠EAC,

由(1)得∠ANE=∠DCE,

∴∠DCE=∠EAC,

tanDCEtanDAC,

DCAB=6,AD=8,

DE,

AE=8﹣,

由(1)得∠AEM=∠DCE

tanAEMtanDCE,

AM,

AN,

MN;

(3)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,

又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,

∴∠AEC=∠NME

AEC與以點E、MN為頂點所組成的三角形相似時

①∠ENM=∠EAC,如圖2,

∴∠ANE=∠EAC

由(2)得:DE;

②∠ENM=∠ECA,

如圖3,

過點EEHAC,垂足為點H,

由(1)得∠ANE=∠DCE,

∴∠ECA=∠DCE

HEDE,

tanHAE,

DE=3x,則HE=3x,AH=4x,AE=5x

AEDEAD,

∴5x+3x=8,

解得x=1,

DE=3x=3,

綜上所述,DE的長分別為或3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)yax2+bx+ca≠0)的對稱軸為直線x=﹣1,圖象經(jīng)過B(﹣30)、C03)兩點,且與x軸交于點A

1)求二次函數(shù)yax2+bx+ca≠0)的表達式;

2)在拋物線的對稱軸上找一點M,使ACM周長最短,求出點M的坐標;

3)若點P為拋物線對稱軸上的一個動點,直接寫出使BPC為直角三角形時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以線段AB上的點O為圓心,0B為半徑作圓O,分別與邊AB,BC相交于D、E兩點,過點EEFACF.

(1)判斷直線EF與⊙O的位置關系,并說明理由.

(2)OB=3,cosB,求線段BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的弦,過點OOC⊥OA,OC交于ABP,且CP=CB

1)求證:BC⊙O的切線;

2)已知∠BAO=25°,點Q是弧AmB上的一點.

①求∠AQB的度數(shù);

②若OA=18,求弧AmB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A14),B4,n)兩點.

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)直接寫出當x0時,的解集.

3)點Px軸上的一動點,試確定點P并求出它的坐標,使PA+PB最。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)某校招聘教師一名,現(xiàn)有甲、乙、丙三人通過專業(yè)知識、講課、答辯三項測試,他們各自的成績?nèi)缦卤硭荆?/span>

應聘者

專業(yè)知識

講課

答辯

70

85

80

90

85

75

80

90

85

按照招聘簡章要求,對專業(yè)知識、講課、答辯三項賦權5:4:1.請計算三名應聘者的平均成績,從成績看,應該錄取誰?

(2)我市舉行了某學科實驗操作考試,有A、B、C、D四個實驗,規(guī)定每位學生只參加其中一個實驗的考試,并由學生自己抽簽決定具體的考試實驗.小王,小張,小厲都參加了本次考試.

①小厲參加實驗D考試的概率是   ;

②用列表或畫樹狀圖的方法求小王、小張抽到同一個實驗的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某批發(fā)部某一玩具價格如圖所示,現(xiàn)有甲、乙兩個商店,計劃在“六一”兒童節(jié)前到該批發(fā)部購買此類玩具.兩商店所需玩具總數(shù)為120個,乙商店所需數(shù)量不超過50個,設甲商店購買個.如果甲、乙兩商店分別購買玩具,兩商店需付款總和為y元.

(1)求y關于的函數(shù)關系式,并寫出自變量的取值范圍;

(2)若甲商店購買不超過100個,請說明甲、乙兩商店聯(lián)合購買比分別購買最多可節(jié)約多少錢;

(3)“六一”兒童節(jié)之后,該批發(fā)部對此玩具價格作了如下調整:數(shù)量不超過100個時,價格不變;數(shù)量超過100個時,每個玩具降價a元.在(2)的條件下,若甲、乙兩商店“六一”兒童節(jié)之后去批發(fā)玩具,最多可節(jié)約2800元,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚和傳承紅色文化,某校欲在暑假期間組織學生到A、B、C、D四個基地開展研學活動,每個學生可從A、B、C、D四個基地中選擇一處報名參加.小瑩調查了自己所在班級的研學報名情況,繪制成如圖所示的兩幅不完整的統(tǒng)計圖,其中扇形統(tǒng)計圖中A、D兩部分的圓心角度數(shù)之比為32.請根據(jù)圖中信息解答下列問題:

1)在這項調查中,共調查了多少名學生?

2)求去往A地和D地的人數(shù),并補全條形統(tǒng)計圖;

3)小瑩和小亮分別從四個基地中隨機選一處前往,用樹狀圖或列表法求兩人前往不同基地的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,∠OAB90°OAABOB8,OC5

1)求點A的坐標;

2)點P是從O點出發(fā),沿X軸正半軸方向以每秒1單位長度的速度運動至點B的一個動點(點P不與點O,B重合),過點P的直線ly軸平行,交四邊形ABCD的邊AOAB于點Q,交OCBC于點R.設運動時間為ts),已知t3時,直線l恰好經(jīng)過點 C

求①點P出發(fā)時同時點E也從點B出發(fā),以每秒1個單位的速度向點O運動,點P停止時點E也停止.設QRE的面積為S,求當0t3St的函數(shù)關系式;并直接寫出S的最大值.

②是否存在某一時刻t,使得ORE為直角三角形?若存在,請求出相應t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案