【題目】如圖a,已知拋物線y=-x2+bx+c經(jīng)過點A(4,0) 、C(0,2),與x軸的另一個交點為B.
(1)求出拋物線的解析式.
(2)如圖b,將△ABC繞AB的中點M旋轉(zhuǎn)180°得到△BAC′,試判斷四邊形BC′AC的形狀.并證明你的結(jié)論.
(3)如圖a,在拋物線上是否存在點D,使得以A、B、D三點為頂點的三角形與△ABC全等?若存在,請直接寫出點D的坐標;若不存在請說明理由.
【答案】(1)y=-x2+x+2;(2)四邊形BC′AC為矩形,見解析;(3)存在,(3,2)
【解析】
(1)由點A、C的坐標,利用待定系數(shù)法即可求出拋物線的解析式;
(2)由點A、B、C的坐標可得出OA、OC、OB的長度,利用勾股定理可求出AC、BC的長,由AC2+BC2=25=AB2可得出∠ACB=90°,再利用旋轉(zhuǎn)的性質(zhì)即可找出四邊形BC′AC為矩形;
(3)假設存在這樣的點D,設D(x, -x2+x+2),則有-x2+x+2=2,求出x的值再進行判斷即可.
(1)∵拋物線y=-x2+bx+c經(jīng)過點A(4,0) 、C(0,2),
∴
解得,
∴拋物線的解析式為:y=-x2+x+2
(2)四邊形BC′AC為矩形.
令y=0,則-x2+x+2=0,解得,
∴B(-1,0)
∵A(4,0) 、C(0,2),
∴OB=1,OA=4,OC=2,
由勾股定理求得:BC=,AC=2
又AB=5,
∴
∴△ABC直角三角形,∠BCA=90°,
∵△ABC繞AB的中點M旋轉(zhuǎn)
∴四邊形BC′AC為平行四邊形,
又∠BCA=90°
∴四邊形BC′AC為矩形.
(3)設D(x, -x2+x+2),則有-x2+x+2=2,
解得,,(不符合題意,舍去),
∴D(3,2)
故存在點D,使得以A、B、D三點為頂點的三角形與△ABC全等.點D的坐標為(3,2).
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子中裝有大小和形狀相同的3個紅球和2個白球,把它們充分攪勻.
(1)求從中任意抽取1個球恰好是紅球的概率;
(2)學校決定在甲、乙兩名同學中選取一名作為學生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個球,若兩球同色,則選甲;若兩球異色,則選乙,你認為這個規(guī)則公平嗎?請用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了測量一個鐵球的直徑,將該鐵球放入工件槽內(nèi),測得的有關數(shù)據(jù)如圖所示(單位:cm),則該鐵球的直徑為( )
A.12 cmB.10 cmC.8 cmD.6 cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,、分別是、的中點,連接、、、,且.
(1)求證:;
(2)若,求的長;
(3)在(2)的條件下,求出的外接圓圓心與的外接圓圓心之間的距離?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水務部門為加強防汛工作,決定對馬邊河上某電站大壩進行加固.原大壩的橫斷面是梯形ABCD,如圖所示,已知迎水面AB的長為20米,∠B=60°,背水面DC的長度為20米,加固后大壩的橫斷面為梯形ABED.若CE的長為5米.
(1)已知需加固的大壩長為100米,求需要填方多少立方米;
(2)求新大壩背水面DE的坡度.(計算結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ACB中,∠C=90°,AC=3,BC=4,O是BC的中點,到點O的距離等于BC的所有點組成的圖形記為G,圖形G與AB交于點D.
(1)補全圖形并求線段AD的長;
(2)點E是線段AC上的一點,當點E在什么位置時,直線ED與 圖形G有且只有一個交點?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,∠B=60°,AB=3cm,過點A作∠EAF=60°,分別交DC,BC的延長線于點E,F,連接EF.
(1)如圖1,當CE=CF時,判斷△AEF的形狀,并說明理由;
(2)若△AEF是直角三角形,求CE,CF的長度;
(3)當CE,CF的長度發(fā)生變化時,△CEF的面積是否會發(fā)生變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點B作⊙O的切線,交DA的延長線于點E,連接BD,且∠E=∠DBC.
(1)求證:DB平分∠ADC;
(2)若CD=9,tan∠ABE=,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com