(2012•遵義)如圖,△OAC中,以O(shè)為圓心,OA為半徑作⊙O,作OB⊥OC交⊙O于B,垂足為O,連接AB交OC于點(diǎn)D,∠CAD=∠CDA.
(1)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若OA=5,OD=1,求線段AC的長(zhǎng).
分析:(1)根據(jù)已知條件“∠CAD=∠CDA”、對(duì)頂角∠BDO=∠CDA可以推知∠BDO=∠CAD;然后根據(jù)等腰三角形OAB的兩個(gè)底角相等、直角三角形的兩個(gè)銳角互余的性質(zhì)推知
∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°.所以線段AC是⊙O的切線;
(2)根據(jù)“等角對(duì)等邊”可以推知AC=DC,所以由圖形知OC=OD+CD;然后利用(1)中切線的性質(zhì)可以在Rt△OAC中,根據(jù)勾股定理來(lái)求AC的長(zhǎng)度.
解答:解:(1)線段AC是⊙O的切線;
理由如下:∵∠CAD=∠CDA(已知),∠BDO=∠CDA(對(duì)頂角相等),
∴∠BDO=∠CAD(等量代換);
又∵OA=OB(⊙O的半徑),
∴∠B=∠OAB(等邊對(duì)等角);
∵OB⊥OC(已知),
∴∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°,
∴線段AC是⊙O的切線;

(2)設(shè)AC=x(x>0).
∵∠CAD=∠CDA(已知),
∴DC=AC=x(等角對(duì)等邊);
∵OA=5,OD=1,
∴OC=OD+DC=1+x;
∵由(1)知,AC是⊙O的切線,
∴在Rt△OAC中,根據(jù)勾股定理得,
OC2=AC2+OA2,即
(1+x)2=x2+52,
解得x=12,即AC=12.
點(diǎn)評(píng):本題綜合考查了勾股定理、切線的判定與性質(zhì).欲證某線是圓的切線,只需證明連接圓心與此線過(guò)圓上的點(diǎn)的線段(圓的半徑)與該直線垂直即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•遵義)如圖,4張背面完全相同的紙牌(用①、②、③、④表示),在紙牌的正面分別寫有四個(gè)不同的條件,小明將這4張紙牌背面朝上洗勻后,先隨機(jī)摸出一張(不放回),再隨機(jī)摸出一張.
(1)用樹狀圖(或列表法)表示兩次摸牌出現(xiàn)的所有可能結(jié)果;
(2)以兩次摸出牌上的結(jié)果為條件,求能判斷四邊形ABCD是平行四邊形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•遵義)如圖,△ABC是邊長(zhǎng)為6的等邊三角形,P是AC邊上一動(dòng)點(diǎn),由A向C運(yùn)動(dòng)(與A、C不重合),Q是CB延長(zhǎng)線上一點(diǎn),與點(diǎn)P同時(shí)以相同的速度由B向CB延長(zhǎng)線方向運(yùn)動(dòng)(Q不與B重合),過(guò)P作PE⊥AB于E,連接PQ交AB于D.
(1)當(dāng)∠BQD=30°時(shí),求AP的長(zhǎng);
(2)當(dāng)運(yùn)動(dòng)過(guò)程中線段ED的長(zhǎng)是否發(fā)生變化?如果不變,求出線段ED的長(zhǎng);如果變化請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•遵義)如圖,AB是⊙O的弦,AB長(zhǎng)為8,P是⊙O上一個(gè)動(dòng)點(diǎn)(不與A、B重合),過(guò)點(diǎn)O作OC⊥AP于點(diǎn)C,OD⊥PB于點(diǎn)D,則CD的長(zhǎng)為
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•遵義)如圖,已知拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)原點(diǎn)O,交x軸于點(diǎn)A,其頂點(diǎn)B的坐標(biāo)為(3,-
3
).
(1)求拋物線的函數(shù)解析式及點(diǎn)A的坐標(biāo);
(2)在拋物線上求點(diǎn)P,使S△POA=2S△AOB;
(3)在拋物線上是否存在點(diǎn)Q,使△AQO與△AOB相似?如果存在,請(qǐng)求出Q點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案