如圖,在每一個(gè)四邊形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.

(1)如圖①,點(diǎn)M是四邊形ABCD邊AD上的一點(diǎn),則△BMC的面積為 24 ;

(2)如圖②,點(diǎn)N是四邊形ABCD邊AD上的任意一點(diǎn),請(qǐng)你求出△BNC周長(zhǎng)的最小值;

(3)如圖③,在四邊形ABCD的邊AD上,是否存在一點(diǎn)P,使得cos∠BPC的值最。咳舸嬖,求出此時(shí)cos∠BPC的值;若不存在,請(qǐng)說明理由.


解:(1)如圖①,過A作AE⊥BC,

∴四邊形AECD為矩形,

∴EC=AD=8,BE=BC﹣EC=12﹣8=4,

在Rt△ABE中,∠ABE=60°,BE=4,

∴AB=2BE=8,AE==4

則SBMC=BC•AE=24;

故答案為:24;

(2)如圖②,作點(diǎn)C關(guān)于直線AD的對(duì)稱點(diǎn)C′,連接C′N,C′D,C′B交AD于點(diǎn)N′,連接CN′,則BN+NC=BN+NC′≥BC′=BN′+CN′,

∴△BNC周長(zhǎng)的最小值為△BN′C的周長(zhǎng)=BN′+CN′+BC=BC′+BC,

∵AD∥BC,AE⊥BC,∠ABC=60°,

∴過點(diǎn)A作AE⊥BC,則CE=AD=8,

∴BE=4,AE=BE•tan60°=4,

∴CC′=2CD=2AE=8

∵BC=12,

∴BC′==4,

∴△BNC周長(zhǎng)的最小值為4+12;

(3)如圖③所示,存在點(diǎn)P,使得cos∠BPC的值最小,

作BC的中垂線PQ交BC于點(diǎn)Q,交AD于點(diǎn)P,連接BP,CP,作△BPC的外接圓O,圓O與直線PQ交于點(diǎn)N,則PB=PC,圓心O在PN上,

∵AD∥BC,

∴圓O與AD相切于點(diǎn)P,

∵PQ=DC=4>6,

∴PQ>BQ,

∴∠BPC<90°,圓心O在弦BC的上方,

在AD上任取一點(diǎn)P′,連接P′B,P′C,P′B交圓O于點(diǎn)M,連接MC,

∴∠BPC=∠BMC≥∠BP′C,

∴∠BPC最大,cos∠BPC的值最小,

連接OB,則∠BON=2∠BPN=∠BPC,

∵OB=OP=4﹣OQ,

在Rt△BOQ中,根據(jù)勾股定理得:OQ2+62=(4﹣OQ)2,

解得:OQ=,

∴OB=,

∴cos∠BPC=cos∠BOQ==

則此時(shí)cos∠BPC的值為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,下列條件不能判定△ADB∽△ABC的是(  )

 

A.

∠ABD=∠ACB

B.

∠ADB=∠ABC

C.

AB2=AD•AC

D.

=

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn).

(1)求一次函數(shù)的解析式;

(2)根據(jù)圖象直接寫出使kx+b<成立的x的取值范圍;

(3)求△AOB的面積.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,過點(diǎn)M(﹣3,2)分別作x軸、y軸的垂線與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),則四邊形MAOB的面積為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


晚飯后,小聰和小軍在社區(qū)廣場(chǎng)散步,小聰問小軍:“你有多高?”小軍一時(shí)語(yǔ)塞.小聰思考片刻,提議用廣場(chǎng)照明燈下的影長(zhǎng)及地磚長(zhǎng)來測(cè)量小軍的身高.于是,兩人在燈下沿直線NQ移動(dòng),如圖,當(dāng)小聰正好站在廣場(chǎng)的A點(diǎn)(距N點(diǎn)5塊地磚長(zhǎng))時(shí),其影長(zhǎng)AD恰好為1塊地磚長(zhǎng);當(dāng)小軍正好站在廣場(chǎng)的B點(diǎn)(距N點(diǎn)9塊地磚長(zhǎng))時(shí),其影長(zhǎng)BF恰好為2塊地磚長(zhǎng).已知廣場(chǎng)地面由邊長(zhǎng)為0.8米的正方形地磚鋪成,小聰?shù)纳砀逜C為1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.請(qǐng)你根據(jù)以上信息,求出小軍身高BE的長(zhǎng).(結(jié)果精確到0.01米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,點(diǎn)B、C、E在y軸上,Rt△ABC 經(jīng)過變換得到Rt△ODE,若點(diǎn)C的坐標(biāo)為(0,1),AC=2,則這種 變換可以是    (     )

   A、△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,再向下平移3

   B、△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,再向下平移1

   C、△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,再向下平移1

   D、△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,再向下平移3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


,       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


計(jì)算﹣3+(﹣1)的結(jié)果是( 。

 

A.

2

B.

﹣2

C.

4

D.

﹣4

 

   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


先化簡(jiǎn):()÷,然后解答下列問題:

(1)當(dāng)x=3時(shí),求原代數(shù)式的值;

(2)原代數(shù)式的值能等于﹣1嗎?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案