(2004•福州)下列圖形中能夠用來作平面鑲嵌的是( )
A.正八邊形
B.正七邊形
C.正六邊形
D.正五邊形
【答案】分析:幾何圖形鑲嵌成平面的關(guān)鍵是:圍繞一點拼在一起的多邊形的內(nèi)角加在一起恰好組成一個周角.
解答:解:A、正八邊形的每個內(nèi)角為:180°-360°÷8=135°,不能整除360°,不能密鋪;
B、正七邊形每個內(nèi)角為:180°-360°÷7=900÷7,不能整除360°,不能密鋪;
C、正六邊形的每個內(nèi)角是120°,能整除360°,能密鋪;
D、正五邊形的每個內(nèi)角是108°,不能整除360°,不能密鋪.
故選C.
點評:本題考查的知識點是:一種正多邊形的鑲嵌應符合一個內(nèi)角度數(shù)能整除360°.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2004•福州)如圖,在邊長為4的正方形ABCD中,E是DC中點,點F在BC邊上,且CF=1,在△AEF中作正方形A1B1C1D1,使邊A1B1在AF上,其余兩個頂點C1、D1分別在EF和AE上.
(1)請直接寫出圖中兩直角邊之比等于1:2的三個直角三角形(不另添加字母及輔助線);
(2)求AF的長及正方形A1B1C1D1的邊長;
(3)在(2)的條件下,取出△AEF,將△EC1D1沿直線C1D1、△C1FB1沿直線C1B1分別向正方形A1B1C1D1內(nèi)折疊,求小正方形A1B1C1D1未被兩個折疊三角覆蓋的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《圖形的對稱》(04)(解析版) 題型:解答題

(2004•福州)如圖,在邊長為4的正方形ABCD中,E是DC中點,點F在BC邊上,且CF=1,在△AEF中作正方形A1B1C1D1,使邊A1B1在AF上,其余兩個頂點C1、D1分別在EF和AE上.
(1)請直接寫出圖中兩直角邊之比等于1:2的三個直角三角形(不另添加字母及輔助線);
(2)求AF的長及正方形A1B1C1D1的邊長;
(3)在(2)的條件下,取出△AEF,將△EC1D1沿直線C1D1、△C1FB1沿直線C1B1分別向正方形A1B1C1D1內(nèi)折疊,求小正方形A1B1C1D1未被兩個折疊三角覆蓋的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《四邊形》(07)(解析版) 題型:解答題

(2004•福州)如圖,在邊長為4的正方形ABCD中,E是DC中點,點F在BC邊上,且CF=1,在△AEF中作正方形A1B1C1D1,使邊A1B1在AF上,其余兩個頂點C1、D1分別在EF和AE上.
(1)請直接寫出圖中兩直角邊之比等于1:2的三個直角三角形(不另添加字母及輔助線);
(2)求AF的長及正方形A1B1C1D1的邊長;
(3)在(2)的條件下,取出△AEF,將△EC1D1沿直線C1D1、△C1FB1沿直線C1B1分別向正方形A1B1C1D1內(nèi)折疊,求小正方形A1B1C1D1未被兩個折疊三角覆蓋的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《三角形》(11)(解析版) 題型:解答題

(2004•福州)如圖,在邊長為4的正方形ABCD中,E是DC中點,點F在BC邊上,且CF=1,在△AEF中作正方形A1B1C1D1,使邊A1B1在AF上,其余兩個頂點C1、D1分別在EF和AE上.
(1)請直接寫出圖中兩直角邊之比等于1:2的三個直角三角形(不另添加字母及輔助線);
(2)求AF的長及正方形A1B1C1D1的邊長;
(3)在(2)的條件下,取出△AEF,將△EC1D1沿直線C1D1、△C1FB1沿直線C1B1分別向正方形A1B1C1D1內(nèi)折疊,求小正方形A1B1C1D1未被兩個折疊三角覆蓋的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年福建省福州市中考數(shù)學試卷(解析版) 題型:解答題

(2004•福州)如圖,在邊長為4的正方形ABCD中,E是DC中點,點F在BC邊上,且CF=1,在△AEF中作正方形A1B1C1D1,使邊A1B1在AF上,其余兩個頂點C1、D1分別在EF和AE上.
(1)請直接寫出圖中兩直角邊之比等于1:2的三個直角三角形(不另添加字母及輔助線);
(2)求AF的長及正方形A1B1C1D1的邊長;
(3)在(2)的條件下,取出△AEF,將△EC1D1沿直線C1D1、△C1FB1沿直線C1B1分別向正方形A1B1C1D1內(nèi)折疊,求小正方形A1B1C1D1未被兩個折疊三角覆蓋的四邊形面積.

查看答案和解析>>

同步練習冊答案