【題目】如圖在平面直角坐標(biāo)系xOy中,△ABC的三個頂點坐標(biāo)分別為A(﹣2,4),B(﹣2,1),C(﹣5,2).
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)將△A1B1C1的三個頂點的橫坐標(biāo)與縱坐同時乘以﹣2,得到對應(yīng)的點A2 , B2 , C2 , 請畫出△A2B2C2;
(3)則S△A1B1C1:S△A2B2C2 .
【答案】
(1)
解:如圖所示:△A1B1C1,即為所求;
(2)
解:如圖所示:△A2B2C2,即為所求;
(3)
解:∵△A1B1C1的三個頂點的橫坐標(biāo)與縱坐同時乘以﹣2,得到對應(yīng)的點A2,B2,C2,
∴△A1B1C1與△A2B2C2,關(guān)于原點位似,位似比為1:2,
∴S△A1B1C1:S△A2B2C2=1:4
【解析】(1)利用關(guān)于x軸對稱點的性質(zhì)得出對應(yīng)點坐標(biāo)進而得出答案;(2)利用對應(yīng)點橫坐標(biāo)與縱坐同時乘以﹣2,進而得出各點的位置;(3)利用位似圖形的性質(zhì)得出面積比即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結(jié)論: ①四邊形CFHE是菱形;②線段BF的取值范圍為3≤BF≤4;
③EC平分∠DCH;④當(dāng)點H與點A重合時,EF=2
以上結(jié)論中,你認(rèn)為正確的有 . (填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,10個邊長為1的正方形如圖擺放在平面直角坐標(biāo)系中,經(jīng)過原點的一條直線l將這10個正方形分成面積相等的兩部分,則該直線l的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在BC,CD上,△AEF是等邊三角形,連接AC交EF于點G,下列結(jié)論:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF=2S△ABE , 其中結(jié)論正確的個數(shù)為( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展以感恩教育為主題的藝術(shù)活動,舉辦了四個項目的比賽,它們分別是演講、唱歌、書法、繪畫.要求每位同學(xué)必須參加,且限報一項活動.以九年級(1)班為樣本進行統(tǒng)計,并將統(tǒng)計結(jié)果繪成如圖1、圖2所示的兩幅統(tǒng)計圖.請你結(jié)合圖示所給出的信息解答下列問題.
(1)求出參加繪畫比賽的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比?
(2)求出扇形統(tǒng)計圖中參加書法比賽的學(xué)生所在扇形圓心角的度數(shù)?
(3)若該校九年級學(xué)生有600人,請你估計這次藝術(shù)活動中,參加演講和唱歌的學(xué)生各有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=60°,點E為直線AC上一點,D為直線BC上的一點,且DA=DE. 當(dāng)點D在線段BC上時,如圖①,易證:BD+AB=AE;
當(dāng)點D在線段CB的延長線上時,如圖②、圖③,猜想線段BD,AB和AE之間又有怎樣的數(shù)量關(guān)系?寫出你的猜想,并選擇一種情況給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC于點D,BC=10cm,AD=8cm.點P從點B出發(fā),在線段BC上以每秒3cm的速度向點C勻速運動,與此同時,垂直于AD的直線m從底邊BC出發(fā),以每秒2cm的速度沿DA方向勻速平移,分別交AB、AC、AD于E、F、H,當(dāng)點P到達點C時,點P與直線m同時停止運動,設(shè)運動時間為t秒(t>0).
(1)當(dāng)t=2時,連接DE、DF,求證:四邊形AEDF為菱形;
(2)在整個運動過程中,所形成的△PEF的面積存在最大值,當(dāng)△PEF的面積最大時,求線段BP的長;
(3)是否存在某一時刻t,使△PEF為直角三角形?若存在,請求出此時刻t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com