分析:(1)先設P
1(x,y),A
1(x,y'),B
1(x',y),得出x'y=1,xy'=1,再根據(jù)
S△OB1D1=
OD
1•B
1D
1=
×y•x',
S△OA1E1=
OE
1•A
1E
1=
y'•x,
S矩形OE1P 1D1=OD
1•OE
1=y•x,最后根據(jù)S
1=
S矩形OE1P 1D1-
S△OB1D1-
S△OA1E1代入計算即可;
(2)由(1)同理即可得出四邊形P
2A
2OB
2的面積;
(3)先設P
n(x,y),A
n(x,y'),B
n(x',y),根據(jù)點A
n,B
n在反比例函數(shù)
yn-1=圖象上,得出S
△OBnDn=
OD
n•B
nD
n=
×y•x'=
(n-1),
S△OAnEn=
OE
n•A
nE
n=
y'•x=
(n-1),
根據(jù)點P
n在反比例函數(shù)
yn=上,得出xy=n,再根據(jù)
S矩形OEnP nDn=OD
n•OE
n=y•x=n,最后根據(jù)S
n=
S矩形OEnP nDn-
S△OBnDn-
S△OAnEn代入計算即可.
解答:解:(1)設P
1(x,y),A
1(x,y'),B
1(x',y),則OE
1=x,OD
1=y,A
1E
1=y',B
1D
1=x',
∵點A
1,B
1在反比例函數(shù)
y1=圖象上,
∴x'y=1,xy'=1,
∴
S△OB1D1=
OD
1•B
1D
1=
×y•x'=
,
S△OA1E1=
OE
1•A
1E
1=
y'•x=
,
∵點P
1在反比例函數(shù)
y2=上,
∴xy=2,
∴
S矩形OE1P 1D1=OD
1•OE
1=y•x=2,
∴S
1=
S矩形OE1P 1D1-
S△OB1D1-
S△OA1E1=2-
-=1;
(2)由(1)同理可得,四邊形P
2A
2OB
2的面積S
2=1,
故答案為:1
(3)設P
n(x,y),A
n(x,y'),B
n(x',y),則OE
n=x,OD
n=y,A
nE
n=y',B
nD
n=x',
∵點A
n,B
n在反比例函數(shù)
yn-1=圖象上,
∴x'y=n-1,xy'=n-1,
∴S
△OBnDn=
OD
n•B
nD
n=
×y•x'=
(n-1),
S△OAnEn=
OE
n•A
nE
n=
y'•x=
(n-1),
∵點P
n在反比例函數(shù)
yn=上,
∴xy=n,
∴
S矩形OEnP nDn=OD
n•OE
n=y•x=n,
∴S
n=
S矩形OEnP nDn-
S△OBnDn-
S△OAnEn=n-
(n-1)
-(n-1)=1;
點評:此題考查了反比例函數(shù)的綜合應用,解題的關鍵是掌握反比例函數(shù)的解析式與三角形的面積和矩形的面積之間的關系,同時要注意運用數(shù)形結合的思想.