【題目】如圖,在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.

(1)求證:△AEF≌△DEB;

(2)求證:四邊形ADCF是菱形;

(3)若AC=4,AB=5,求菱形ADCF的面積.

【答案】(1)證明見解析;(2)證明見解析;(3)10.

【解析】試題分析:(1)利用AAS證明全等.(2)利用(1)中結論,先證明ADCF是平行四邊形,再利用直角三角形中線性質求相鄰邊相等.(3)利用菱形面積公式求面積.

試題解析:

解:(1)證明:∵AFBC,∴∠AFEDBE,FAEBDE.EAD的中點,AEDE∴△AFE≌△DBE.

(2)證明:由(1)知△AEF≌△DEB,AFDB.DBDC,AFCD.AFBC∴四邊形ADCF是平行四邊形.∵∠BAC90°,DBC的中點,ADDCBC

∴四邊形ADCF是菱形.

(3)連接DF,(2)AFBDAFBD,

∴四邊形ABDF是平行四邊形DFAB5,S菱形ADCFAC·DF×4×510.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點O為AB的中點,連接DO并延長到點E,使OE=OD,連接AE,BE.

(1)求證:四邊形AEBD是矩形;

(2)當△ABC滿足什么條件時,矩形AEBD是正方形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個粒子在第一象限和x,y軸的正半軸上運動,在第一秒內,它從原點運動到(0,1),接著它按圖所示在x軸、y軸的平行方向來回運動,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒運動一個單位長度,那么2010秒時,這個粒子所處位置為( )

A.(14,44) B.(15,44) C.(44,14) D.(44,15)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2﹣2ax﹣3a(a<0)與x軸交于A,B兩點,點A在點B的左邊,與y軸交于點C,頂點為D,若以BD為直徑的⊙M經過點C.

(1)請直接寫出C,D兩點的坐標(用含a的代數(shù)式表示);
(2)求拋物線的函數(shù)表達式;
(3)在拋物線上是否存在點E,使∠EDB=∠CBD?若存在,請求出所有滿足條件的點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC,BD相交于點O,OAC的中點,AD//BC,AC=8,BD=6.

(1)求證:四邊形ABCD是平行四邊形;

(2)若ACBD,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在面積為12的平行四邊形ABCD中,過點A作直線BC的垂線交直線BC于點E,過點A作直線CD的垂線交直線CD于點F,若AB=4,BC=6,則CE+CF的值為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠B=30°,ABACO是兩條對角線的交點,過點OAC的垂線分別交邊ADBC于點E,F;點M是邊AB的一個三等分點。則AOEBMF的面積比為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有質地均勻的A、B、C、D四張卡片,上面對應的圖形分別是圓、正方形、正三角形、平行四邊形,將這四張卡片放入不透明的盒子中搖勻,從中隨機抽出一張(不放回),再隨機抽出第二張.
(1)如果要求抽出的兩張卡片上的圖形,既有圓又有三角形,請你用列表或畫樹狀圖的方法,求出出現(xiàn)這種情況的概率.
(2)因為四張卡片上有兩張上的圖形,既是中心對稱圖形,又是軸對稱圖形,所以小明和小東約定做一個游戲,規(guī)則是:如果抽出的兩個圖形,既是中心對稱圖形又是軸對稱圖形,則小明贏;否則,小東贏.問這個游戲公平嗎?為什么?如果不公平,請你設計一個公平的游戲規(guī)則.

查看答案和解析>>

同步練習冊答案