已知:如圖,二次函數(shù)的圖象與x軸交于點A、B(點A在點B的左側),拋物線的頂點為Q,直線QB與y軸交于點E.
(1)求點E的坐標;
(2)在x軸上方找一點C,使以點C、O、B為頂點的三角形與△BOE相似,請直接寫出點C的坐標.

【答案】分析:(1)根據(jù)二次函數(shù)解析式求得點B的坐標;設直線BQ:y=kx+b(k≠0).則把B、Q的坐標代入該解析式列出關于系數(shù)k、b的方程組,通過解方程組即可求得它們的值;最后令x=0,則y=-8,即E(0,-8);
(2)需要分類討論:①如圖1,若∠COB=∠EOB=90°;②如圖1,若∠CBO=∠EOB=90°;③如圖2,若∠OCB=∠BOE=90°.由相似三角形的對應邊成比例求得相關線段的長度.
解答:解:(1)令y=0,得
解方程,得
x1=-2,x2=4,
∵點A在點B的左側,
∴B(4,0)
,
∴Q(1,-6).
設直線BQ:y=kx+b(k≠0).則把B、Q的坐標代入,得

解得
∴直線BQ的解析式是:y=2x-8,
∴E(0,-8);

(2)由(1)知,B(4,0),E(0,-8),則OE=8,OB=4.
①如圖1,若∠COB=∠EOB=90°.
當△BOC∽△BOE時,==1,即OC=OE=8,則C1(0,8);
當△COB∽△BOE時,=,即=,則CO=2,故C2(0,2);
②如圖1,若∠CBO=∠EOB=90°.
當△CBO∽△BOE時,=,即=,解得,CB=2,故C3(4,2);
當△OBC∽△BOE時,==1,即BC=OE=8,故C4(4,8);
③如圖2,若∠OCB=∠BOE=90°,設C(x,y).
△OCB∽△BOE時,=,即=,或=  ①.
∵直角△BOC中,根據(jù)勾股定理知OC2+BC2=OB2=16,②
∴由①②得,OC=,BC=
OC•BC=
OB•y=OC•BC,
∴y=,
∴x=,即C5,).
同理,當△BCO∽△BOE時,C6).
綜上所述,符合條件的點C的坐標是:
C1(0,8),C2(0,2),C3(4,2),C4(4,8),C5,),C6,).
點評:本題考查了待定系數(shù)法求一次函數(shù)解析式,相似三角形的判定與性質以及二次函數(shù)的綜合題.解答(2)題時,要分類討論,以防漏解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,二次函數(shù)y=x2-4的圖象與x軸交于A、B兩點(點A在點B的精英家教網(wǎng)左邊),與y軸交于點C.直線x=m(m>2)與x軸交于點D.
(1)求A、B、C三點的坐標;
(2)在直線x=m(m>2)上有一點P(點P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求P點的坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,試問:拋物線y=x2-4上是否存在一點Q,使得四邊形ABPQ為平行四邊形?如果存在這樣的點Q,請求出m的值;如果不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,二次函數(shù)y=x2+(2k-1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使銳角△AOB的面積等于3.求點B的坐標;
(3)對于(2)中的點B,在拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,二次函數(shù)y=ax2+2ax-3a(a≠0)圖象的頂點為H,與x軸交于A、B兩點(B在A點右側),點H、B關于直線l:y=
3
3
x+
3
對稱.
(1)求A、B兩點坐標,并證明點A在直線l上;
(2)求二次函數(shù)解析式;
(3)過點B作直線BK∥AH交直線l于K點,M、N分別為直線AH和直線l上的兩個動點,連接HN、NM、MK,求HN+NM+MK和的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•閘北區(qū)一模)已知:如圖,二次函數(shù)y=
2
3
x2-
4
3
x-
16
3
的圖象與x軸交于點A、B(點A在點B的左側),拋物線的頂點為Q,直線QB與y軸交于點E.
(1)求點E的坐標;
(2)在x軸上方找一點C,使以點C、O、B為頂點的三角形與△BOE相似,請直接寫出點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,二次函數(shù)y=ax2-2ax+c(a≠0)的圖象與y軸交于點C(0,4),與x軸交于點A、B,點A的坐標為(4,0).
(1)求該二次函數(shù)的關系式;
(2)寫出該二次函數(shù)的對稱軸和頂點坐標;
(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;
(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案