我市某工藝廠為配合奧運會,設計了一款成本為20元∕件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):

銷售單價x(元/件)
……
30
40
50
60
……
每天銷售量y(件)
……
500
400
300
200
……
(1)把上表中x、y的各組對應值作為點的坐標,在下面的平面直角坐標系中描出相應的點,猜想y與x的函數(shù)關系,并求出函數(shù)關系式;

(2)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價-成本總價)
(3)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

(1)見解析   (2)50元∕件時,9000元   (3)45元∕件時,利潤最大

解析分析:(1)從表格中的數(shù)據(jù)我們可以看出當x增加10時,對應y的值減小100,所以y與x之間可能是一次函數(shù)的關系,我們可以根據(jù)圖象發(fā)現(xiàn)這些點在一條直線上,所以y與x之間是一次函數(shù)的關系,然后設出一次函數(shù)關系式,求出其關系式.
(2)利用二次函數(shù)的知識求最大值.
解:(1)畫圖如圖;

由圖可猜想y與x是一次函數(shù)關系,
設這個一次函數(shù)為y=kx+b(k≠0)
∵這個一次函數(shù)的圖象經(jīng)過(30,500)、(40,400)這兩點,
,解得
∴函數(shù)關系式是:y=-10x+800.
(2)設工藝廠試銷該工藝品每天獲得的利潤是W元,依題意得
W=(x-20)(-10x+800)
=-10x2+1000x-16000
=-10(x-50)2+9000
∴當x=50時,W有最大值9000.
所以,當銷售單價定為50元∕件時,工藝廠試銷該工藝品每天獲得的利潤最大,最大利潤是9000元.
(3)對于函數(shù)W=-10(x-50)2+9000,
當x≤45時,W的值隨著x值的增大而增大,銷售單價定為45元∕件時,工藝廠試銷該工藝品每天獲得的利潤最大.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

甲、乙兩車分別從A地將一批物品運往B地,再返回A地,如圖表示兩車離A地的距離s(千米)隨時間t(小時)變化的圖象,已知乙車到達B地后以30千米/小時的速度返回.請根據(jù)圖象中的數(shù)據(jù)回答:
(1)甲車出發(fā)多長時間后被乙車追上?
(2)甲車與乙車在距離A地多遠處迎面相遇?
(3)甲車從B地返回的速度多大時,才能比乙車先回到A地?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

一農(nóng)民帶了若干千克自產(chǎn)的土豆進城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售, 售出土豆千克數(shù)與他手中持有的錢(含備用零錢)的關系如圖所示,結合圖象回答下列問題:

(1) 農(nóng)民自帶的零錢是多少?
(2) 降價前他每千克土豆出售的價格是多少?
(3) 降價后他按每千克0.4元將剩余土豆售完,這時他手中的錢(含備用零錢) 是26元,問他一共帶了多少千克土豆.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,梯形ABCD中,AB∥CD,AB=14,AD= 4,CD=7.直線l經(jīng)過A,D兩點,且sin∠DAB=.動點P在線段AB上從點A出發(fā)以每秒2個單位的速度向點B運動,同時動點Q從點B出發(fā)以每秒5個單位的速度沿B→C→D的方向向點D運動,過點P作PM垂直于AB,與折線A→D→C相交于點M,當P,Q兩點中有一點到達終點時,另一點也隨之停止運動.設點P,Q運動的時間為t秒(t>0),△MPQ的面積為S.

(1)求腰BC的長;
(2)當Q在BC上運動時,求S與t的函數(shù)關系式;
(3)在(2)的條件下,是否存在某一時刻t,使得△MPQ的面積S是梯形ABCD面積的?若存在,請求出t的值;若不存在,請說明理由;
(4)隨著P,Q兩點的運動,當點M在線段DC上運動時,設PM的延長線與直線l相交于點N,試探究:當t為何值時,△QMN為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,O為坐標原點,點A的坐標為(0,4),點B的坐標為(4,0),點C的坐標為(-4,0),點P在射線AB上運動,連結CP與y軸交于點D,連結BD.過P,D,B三點作⊙Q與y軸的另一個交點為E,延長DQ交⊙Q于點F,連結EF,BF.

(1)求直線AB的函數(shù)解析式;
(2)當點P在線段AB(不包括A,B兩點)上時.
①求證:∠BDE=∠ADP;
②設DE=x,DF=y.請求出y關于x的函數(shù)解析式;
(3)請你探究:點P在運動過程中,是否存在以B,D,F(xiàn)為頂點的直角三角形,滿足兩條直角邊之比為2:1?如果存在,求出此時點P的坐標:如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=65時,y=55;x=75時,y=45.
(1)求一次函數(shù)y=kx+b的表達式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
(3)若該商場獲得利潤不低于500元,試確定銷售單價x的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于A(2,3),B(-3,n)兩點.

(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集______________;
(3)過點B作BC⊥x軸,垂足為C,求SABC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,O為坐標原點,點A坐標為(1,0),以OA為邊在第一象限內(nèi)作等邊△OAB,C為x軸正半軸上的一個動點(OC>1),連接BC,以BC為邊在第一象限內(nèi)作等邊△BCD,直線DA交y軸于E點.
(1)如圖,當C點在x軸上運動時,設AC=x,請用x表示線段AD的長;

(2)隨著C點的變化,直線AE的位置變化嗎?若變化,請說明理由;若不變,請求出直線AE的解析式.
(3)以線段BC為直徑作圓,圓心為點F,
①當C點運動到何處時直線EF∥直線BO?此時⊙F和直線BO的位置關系如何?請說明理由.
②G為CD與⊙F的交點,H為直線DF上的一個動點,連結HG、HC,求HG+HC的最小值,并將此最小值用x表示.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知一次函數(shù)y=(12m)x+m+1,求當m為何值時.
(1)y隨x的增大而增大?
(2)圖象經(jīng)過第一、二、四象限?
(3)圖象經(jīng)過第二、四象限?
(4)圖象與y軸的交點在x軸的下方?

查看答案和解析>>

同步練習冊答案