【題目】我市東坡實(shí)驗(yàn)中學(xué)準(zhǔn)備開展“陽光體育活動”,決定開設(shè)足球、籃球、乒乓球、羽毛球、排球等球類活動,為了了解學(xué)生對這五項(xiàng)活動的喜愛情況,隨機(jī)調(diào)查了m名學(xué)生(每名學(xué)生必選且只能選擇這五項(xiàng)活動中的一種).
根據(jù)以上統(tǒng)計(jì)圖提供的信息,請解答下列問題:
(1)m= , n= .
(2)補(bǔ)全上圖中的條形統(tǒng)計(jì)圖.
(3)若全校共有2000名學(xué)生,請求出該校約有多少名學(xué)生喜愛打乒乓球.
(4)在抽查的m名學(xué)生中,有小薇、小燕、小紅、小梅等10名學(xué)生喜歡羽毛球活動,學(xué)校打算從小薇、小燕、小紅、小梅這4名女生中,選取2名參加全市中學(xué)生女子羽毛球比賽,請用列表法或畫樹狀圖法,求同時(shí)選中小紅、小燕的概率.(解答過程中,可將小薇、小燕、小紅、小梅分別用字母A、B、C、D代表)
【答案】
(1)100;5
(2)
(3)
解:若全校共有2000名學(xué)生,該校約有2000× =400名學(xué)生喜愛打乒乓球.
(4)
解:畫樹狀圖得:
∵一共有12種可能出現(xiàn)的結(jié)果,它們都是等可能的,符合條件的有兩種,
∴P(B、C兩隊(duì)進(jìn)行比賽)= = .
【解析】解:(1)由題意m=30÷30%=100,排球占 =5%,
∴n=5,
所以答案是100,5.(2)足球=100﹣30﹣20﹣10﹣5=35人,
條形圖如圖所示,
【考點(diǎn)精析】掌握扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖是解答本題的根本,需要知道能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項(xiàng)目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東64°方向,距離燈塔120海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東45°方向上的B處,求BP和BA的長(結(jié)果取整數(shù)).
參考數(shù)據(jù):sin64°≈0.90,cos64°≈0.44,tan64°≈2.05, 取1.414.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y= x2﹣4的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,⊙C的半徑為 ,P為⊙C上一動點(diǎn).
(1)點(diǎn)B,C的坐標(biāo)分別為B(),C();
(2)是否存在點(diǎn)P,使得△PBC為直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)連接PB,若E為PB的中點(diǎn),連接OE,則OE的最大值= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,在平面直角坐標(biāo)系xoy中,四邊形OABC是矩形,OA=4,OC=3,動點(diǎn)P從點(diǎn)C出發(fā),沿射線CB方向以每秒2個單位長度的速度運(yùn)動;同時(shí),動點(diǎn)Q從點(diǎn)O出發(fā),沿x軸正半軸方向以每秒1個單位長度的速度運(yùn)動.設(shè)點(diǎn)P、點(diǎn)Q的運(yùn)動時(shí)間為t(s).
(1)當(dāng)t=1s時(shí),求經(jīng)過點(diǎn)O,P,A三點(diǎn)的拋物線的解析式;
(2)當(dāng)t=2s時(shí),求tan∠QPA的值;
(3)當(dāng)線段PQ與線段AB相交于點(diǎn)M,且BM=2AM時(shí),求t(s)的值;
(4)連接CQ,當(dāng)點(diǎn)P,Q在運(yùn)動過程中,記△CQP與矩形OABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,點(diǎn)D是邊AB的中點(diǎn),點(diǎn)E在邊BC上,AE=BE,點(diǎn)M是AE的中點(diǎn),聯(lián)結(jié)CM,點(diǎn)G在線段CM上,作∠GDN=∠AEB交邊BC于N.
(1)如圖2,當(dāng)點(diǎn)G和點(diǎn)M重合時(shí),求證:四邊形DMEN是菱形;
(2)如圖1,當(dāng)點(diǎn)G和點(diǎn)M、C不重合時(shí),求證:DG=DN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙M經(jīng)過原點(diǎn)O(0,0),點(diǎn)A( ,0)與點(diǎn)B(0,﹣ ),點(diǎn)D在劣弧 上,連接BD交x軸于點(diǎn)C,且∠COD=∠CBO.
(1)求⊙M的半徑;
(2)求證:BD平分∠ABO;
(3)在線段BD的延長線上找一點(diǎn)E,使得直線AE恰好為⊙M的切線,求此時(shí)點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,對角線AC、BD交于點(diǎn)O,動點(diǎn)P在線段BC上(不含點(diǎn)B),∠BPE= ∠ACB,PE交BO于點(diǎn)E,過點(diǎn)B作BF⊥PE,垂足為F,交AC于點(diǎn)G.
(1)當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)(如圖①),求證:△BOG≌△POE;
(2)通過觀察、測量、猜想: = ,并結(jié)合圖②證明你的猜想;
(3)把正方形ABCD改為菱形,其他條件不變(如圖③),若∠ACB=α,求 的值.(用含α的式子表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com