如圖,拋物線交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B.
(1)求直線AB對應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于x軸,在點(diǎn)A、B之間平行移動,直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點(diǎn)的橫坐標(biāo)為m,且0<m<3.試比較線段MN與PQ的大。
(1)y=2x﹣8
(2)①當(dāng)2m﹣3<0,即0<m<時(shí), 則MN﹣PQ<0,即MN<PQ;
②當(dāng)2m﹣3=0,即m=時(shí), 則MN﹣PQ=0,即MN=PQ;
③當(dāng)2m﹣3>0即<m<3時(shí),則MN﹣PQ>0,即MN>PQ。
【解析】
分析:(1)利用二次函數(shù)解析式,求出A、B兩點(diǎn)的坐標(biāo),再利用待定系數(shù)法求出一次函數(shù)解析式;
(2)根據(jù)M的橫坐標(biāo)和直尺的寬度,求出P的橫坐標(biāo),再代入直線和拋物線解析式,求出MN、PQ的長度表達(dá)式,再比較即可。
解:(1)當(dāng)x=0時(shí),y=﹣8;
當(dāng)y=0時(shí),x2﹣2x﹣8=0,解得,x1=4,x2=﹣8。
∴A(0,﹣8),B(4,0)。
設(shè)一次函數(shù)解析式為y=kx+b,
將A(0,﹣8),B(4,0)分別代入解析式得,解得,。
∴一次函數(shù)解析式為y=2x﹣8。
(2)∵M(jìn)點(diǎn)橫坐標(biāo)為m,則P點(diǎn)橫坐標(biāo)為(m+1)。
∴;
。
∴。
∵0<m<3,
∴①當(dāng)2m﹣3<0,即0<m<時(shí), 則MN﹣PQ<0,即MN<PQ;
②當(dāng)2m﹣3=0,即m=時(shí), 則MN﹣PQ=0,即MN=PQ;
③當(dāng)2m﹣3>0即<m<3時(shí),則MN﹣PQ>0,即MN>PQ。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:北京期末題 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com