如圖,拋物線交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B.

(1)求直線AB對應(yīng)的函數(shù)關(guān)系式;

(2)有一寬度為1的直尺平行于x軸,在點(diǎn)A、B之間平行移動,直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點(diǎn)的橫坐標(biāo)為m,且0<m<3.試比較線段MN與PQ的大。

 

【答案】

(1)y=2x﹣8

(2)①當(dāng)2m﹣3<0,即0<m<時(shí), 則MN﹣PQ<0,即MN<PQ;

②當(dāng)2m﹣3=0,即m=時(shí), 則MN﹣PQ=0,即MN=PQ;

③當(dāng)2m﹣3>0即<m<3時(shí),則MN﹣PQ>0,即MN>PQ。

【解析】

分析:(1)利用二次函數(shù)解析式,求出A、B兩點(diǎn)的坐標(biāo),再利用待定系數(shù)法求出一次函數(shù)解析式;

(2)根據(jù)M的橫坐標(biāo)和直尺的寬度,求出P的橫坐標(biāo),再代入直線和拋物線解析式,求出MN、PQ的長度表達(dá)式,再比較即可。

解:(1)當(dāng)x=0時(shí),y=﹣8;

當(dāng)y=0時(shí),x2﹣2x﹣8=0,解得,x1=4,x2=﹣8。

∴A(0,﹣8),B(4,0)。

設(shè)一次函數(shù)解析式為y=kx+b,

將A(0,﹣8),B(4,0)分別代入解析式得,解得,

∴一次函數(shù)解析式為y=2x﹣8。

(2)∵M(jìn)點(diǎn)橫坐標(biāo)為m,則P點(diǎn)橫坐標(biāo)為(m+1)。

;

。

∵0<m<3,

∴①當(dāng)2m﹣3<0,即0<m<時(shí), 則MN﹣PQ<0,即MN<PQ;

②當(dāng)2m﹣3=0,即m=時(shí), 則MN﹣PQ=0,即MN=PQ;

③當(dāng)2m﹣3>0即<m<3時(shí),則MN﹣PQ>0,即MN>PQ。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線交x軸于點(diǎn)A(-2,0),點(diǎn)B(4,0),交y軸于點(diǎn)C(0,4).
(1)求拋物線的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)若直線y=x交拋物線于M,N兩點(diǎn),交拋物線的對稱軸于點(diǎn)E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動點(diǎn),過P作PF∥ED交直線MN上方的拋物線于點(diǎn)F.問:在直線MN上是否存在點(diǎn)P,使得以P,E,D,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出點(diǎn)P及相應(yīng)的點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線交x軸于點(diǎn)A(-2,0),點(diǎn)B(4,0),交y軸于點(diǎn)C(0,-4).
(1)求拋物線的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)若直線y=-x交拋物線于M,N兩點(diǎn),交拋物線的對稱軸于點(diǎn)E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動點(diǎn),過P作PF∥ED交直線MN下方的拋物線于點(diǎn)F.問:在直線MN上是否存在點(diǎn)P,使得以P、E、D、F為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出點(diǎn)P及相應(yīng)的點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線交x軸于點(diǎn)A(-2,0),點(diǎn)B(4,0),交y軸于點(diǎn)C(0,4).
(1)求拋物線的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)若直線y=x交拋物線于M,N兩點(diǎn),交拋物線的對稱軸于點(diǎn)E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動點(diǎn),過P作PF∥ED交直線MN上方的拋物線于點(diǎn)F.問:在直線MN上是否存在點(diǎn)P,使得以P,E,D,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出點(diǎn)P及相應(yīng)的點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線交x軸于點(diǎn)A(-2,0),點(diǎn)B(4,0),交y軸于點(diǎn)C(0,-4).
(1)求拋物線的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)若直線y=-x交拋物線于M,N兩點(diǎn),交拋物線的對稱軸于點(diǎn)E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動點(diǎn),過P作PF∥ED交直線MN下方的拋物線于點(diǎn)F.問:在直線MN上是否存在點(diǎn)P,使得以P、E、D、F為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出點(diǎn)P及相應(yīng)的點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:北京期末題 題型:解答題

如圖,拋物線交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)P是它的頂點(diǎn),點(diǎn)A的橫坐標(biāo)是-3,點(diǎn)B的橫坐標(biāo)是1。
(1) 求m、n的值;
(2)求直線PC的解析式;
(3)請?zhí)骄恳渣c(diǎn)A為圓心、直徑為5的圓與直線 PC的位置關(guān)系,并說明理由。
        (參考數(shù):,)

查看答案和解析>>

同步練習(xí)冊答案