你會(huì)求(a-1)(a2012+a2011+a2010+‥‥a2+a+1)的值嗎?這個(gè)問(wèn)題看上去很復(fù)雜,我們可以先考慮簡(jiǎn)單的情況,通過(guò)計(jì)算,探索規(guī)律:
(a-1)(a+1)=a2-1
(a-1)(a2+a+1)=a3-1;
(a-1)(a3+a2+a+1)=a4-1;
(1)由上面的規(guī)律我們可以大膽猜想,得到(a-1)(a2012+a2011+a2010+‥‥a2+a+1)=
a2013-1
a2013-1

利用上面的結(jié)論,求
(2)22013+22012+22011+‥‥22+2+1的值是
22014-1
22014-1
.        
(3)求52013+52012+52011+‥‥52+5+1的值.
分析:(1)根據(jù)題意得到(a-1)(a2012+a2011+a2010+‥‥a2+a+1)=a2013-1;
(2)將得出的規(guī)律中的a換為2,計(jì)算即可得到結(jié)果;
(3)將a換為5,計(jì)算即可得到結(jié)果.
解答:解:(1)由上面的規(guī)律我們可以大膽猜想,得到(a-1)(a2012+a2011+a2010+‥‥a2+a+1)=a2013-1;
(2)∵(2-1)(22013+22012+22011+‥‥22+2+1)=22014-1,
∴22013+22012+22011+‥‥22+2+1的值是22014-1;
(3)∵(5-1)(52013+52012+52011+‥‥52+5+1)=52014-1,
∴52013+52012+52011+‥‥52+5+1=
1
4
(52014-1).
故答案為:(1)a2013-1;(2)22014-1
點(diǎn)評(píng):此題考查了整式的混合運(yùn)算,弄清題中的規(guī)律是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

你會(huì)求4-
3
的整數(shù)部分嗎?閱讀后再解答.
解:因?yàn)?<
3
<2,
所以-1>-
3
>-2,
即4-1>4-
3
>4-2,
3>4-
3
>2.
設(shè)4-
3
=2+b.整數(shù)部分為
 
,小數(shù)部分b=
 

運(yùn)用上述方法解答問(wèn)題:9-
11
和9+
11
小數(shù)部分分別為a,b,求ab-a+b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

同學(xué)們,你會(huì)求數(shù)軸上兩點(diǎn)間的距離嗎?
例如:數(shù)軸上,3和5兩數(shù)在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離可理解為|3-5|=2或理解為5-3=2,5與-2兩數(shù)在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離可理解為|(-5)-2|=7或|5-(-2)|=7.
試探索:
(1)求7與-7兩數(shù)在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離=
14
14

(2)找出所有符合條件的整數(shù)x,使得|x+3|+|x-1|=4這樣的整數(shù)是
±1、0、-2、-3
±1、0、-2、-3

(3)由以上探索猜想對(duì)于任何有理數(shù)x,|x-3|+|x+6|是否有最小值?如果有,寫(xiě)出最小值,如果沒(méi)有,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x1,x2是方程2x2-3x=1的兩根.
(1)求
1
x1
+
1
x2
,(x1-3)(x2-3)和(x1-x22的值;
(2)如果有個(gè)方程的兩根恰好分別是x1,x2的2倍,那么你會(huì)求這個(gè)方程嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:《第21章 二次根式》2009年單元測(cè)試卷2(解析版) 題型:解答題

你會(huì)求4-的整數(shù)部分嗎?閱讀后再解答.
解:因?yàn)?<<2,
所以-1>->-2,
即4-1>4->4-2,
3>4->2.
設(shè)4-=2+b.整數(shù)部分為_(kāi)_____,小數(shù)部分b=______

查看答案和解析>>

同步練習(xí)冊(cè)答案