【題目】四邊形ABCD是正方形,MBC邊上的一點(diǎn),ECD邊的中點(diǎn),AE平分∠DAM

(1)求證:AM=AD+MC

(2)若四邊形ABCD是長(zhǎng)與寬不相等的矩形,其他條件不變,如圖2,試判斷AM=AD+MC是否成立?若成立,請(qǐng)給出證明,若不成立,請(qǐng)說(shuō)明理由;

【答案】(1)證明見解析;(2)AM=AD+MC仍然成立.

【解析】

1)從平行線和中點(diǎn)這兩個(gè)條件出發(fā),延長(zhǎng)AE、BC交于點(diǎn)N,如圖11),易證△ADE≌△NCE,從而有AD=CN,只需再證明AM=NM即可.

2)在圖21)中,仿照(1)中的證明思路即可證到AM=AD+MC仍然成立.

(1)證明:延長(zhǎng)AE、BC交于點(diǎn)N,如圖1(1)

∵四邊形ABCD是正方形

ADBC

∴∠DAE=ENC

AE平分∠DAM

∴∠DAE=MAE

∴∠ENC=MAE

MA=MN

在△ADE和△NCE中,

∴△ADE≌△NCE(AAS)

AD=NC

MA=MN=NC+MC

=AD+MC

(2)結(jié)論AM=AD+MC仍然成立.

證明:延長(zhǎng)AE、BC交于點(diǎn)P,如圖2(1),

∵四邊形ABCD是矩形,

ADBC

∴∠DAE=EPC

AE平分∠DAM,

∴∠DAE=MAE

∴∠EPC=MAE

MA=MP

在△ADE和△PCE中,

∴△ADE≌△PCE(AAS)

AD=PC

MA=MP=PC+MC

=AD+MC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察圖中給出的四個(gè)點(diǎn)陣,s表示每個(gè)點(diǎn)陣中的點(diǎn)的個(gè)數(shù),按照?qǐng)D形中的點(diǎn)的個(gè)數(shù)變化規(guī)律,猜想第10個(gè)點(diǎn)陣中的點(diǎn)的個(gè)數(shù)s為( .

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點(diǎn),且BE=DF,連接EF交BD于O.

(1)求證:BO=DO;

(2)若EF⊥AB,延長(zhǎng)EF交AD的延長(zhǎng)線于G,當(dāng)FG=1時(shí),求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一張正方形紙片剪成四個(gè)小正方形,得到4個(gè)小正方形,稱為第一次操作;然后,將其中的一個(gè)正方形再剪成四個(gè)小正方形,共得到7個(gè)小正方形,稱為第二次操作;再將其中的一個(gè)正方形再剪成四個(gè)小正方形,共得到10個(gè)小正方形,稱為第三次操作;…,根據(jù)以上操作,若要得到2011個(gè)小正方形,則需要操作的次數(shù)是( 。

A. 669 B. 670 C. 671 D. 672

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了應(yīng)對(duì)人口老齡化問題,國(guó)家大力發(fā)展養(yǎng)老事業(yè).某養(yǎng)老機(jī)構(gòu)定制輪椅供行動(dòng)不便的老人使用.圖①是一種型號(hào)的手動(dòng)輪椅實(shí)物圖,圖②為其側(cè)面示意圖,該輪椅前后長(zhǎng)度為120cm,后輪半徑為24cm,CB=CD=24cm,踏板CBCD垂直,橫檔AD、踏板CB與地面所成的角分別為15°、30°.求:

1)求橫檔AD的長(zhǎng);

2)點(diǎn)C離地面的高度.(sin15°=0.26,cos15°=0.97,精確到1cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形OABC中,ABOCOAB90°, OCB60°,AB2OA2.

(1)如圖①,連接OB,請(qǐng)直接寫出OB的長(zhǎng)度;

(2)如圖②,過(guò)點(diǎn)OOHBC于點(diǎn)H.動(dòng)點(diǎn)P從點(diǎn)H出發(fā),沿線段HO向點(diǎn)O運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿線段OA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長(zhǎng)度,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,OPQ的面積為S(平方單位)

①求St之間的函數(shù)關(guān)系式;

②設(shè)PQOB交于點(diǎn)M,當(dāng)OPM為等腰三角形時(shí),試求出OPQ的面積S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在矩形MNPQ中,動(dòng)點(diǎn)R從點(diǎn)N出發(fā),沿N→P→Q→M方向運(yùn)動(dòng)至點(diǎn)M處停止.設(shè)點(diǎn)R運(yùn)動(dòng)的路程為x,△MNR的面積為y,如果y關(guān)于x的函數(shù)圖象如圖②所示,則當(dāng)x4時(shí),點(diǎn)R應(yīng)運(yùn)動(dòng)到( )

A. PB. QC. MD. N

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為1,0,點(diǎn)B的坐標(biāo)為0,4,已知點(diǎn)Em,0是線段DO上的動(dòng)點(diǎn),過(guò)點(diǎn)E作PEx軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H

1求該拋物線的解析式;

2當(dāng)點(diǎn)P在直線BC上方時(shí),請(qǐng)用含m的代數(shù)式表示PG的長(zhǎng)度;

32的條件下,是否存在這樣的點(diǎn)P,使得以P、B、G為頂點(diǎn)的三角形與DEH相似?若存在,求出此時(shí)m的值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖一條拋物線a≠0)與x軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的拋物線三角形

1拋物線三角形一定是_______________三角形;

2)若拋物線y=x2+bxb0)的拋物線三角形是等腰直角三角形,求b的值;

3)如圖,△OAB是拋物線y=x2+b′xb′0)的拋物線三角形,是否存在以原點(diǎn)O為對(duì)稱中心的矩形ABCD?若存在,求出過(guò)O、C、D三點(diǎn)的拋物線的表達(dá)式;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案