如圖,已知二次函數(shù)y=ax2-4x+c的圖象經(jīng)過點(diǎn)A和點(diǎn)B.
(1)求該二次函數(shù)的表達(dá)式;
(2)寫出該拋物線的對(duì)稱軸及頂點(diǎn)坐標(biāo);
(3)過點(diǎn)B作BC垂直于x軸于點(diǎn)C,求△AOC的面積?
(1)把A(-1,-1)和B(3,-9)代入y=ax2-4x+c得
a+4+c=-1
9a-12+c=-9
,
解得
a=1
c=-6
,
所以該二次函數(shù)的表達(dá)式為y=x2-4x-6;

(2)y=x2-4x-6
=(x-2)2-10,
所以該拋物線的對(duì)稱軸為直線x=2,頂點(diǎn)坐標(biāo)為(2,-10);

(3)如圖,S△AOC=
1
2
×3×1=
3
2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)y=ax2+bx+c的圖象的一部分如圖所示.已知它的頂點(diǎn)M在第二象限,且經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(0,1).
(1)試求a,b所滿足的關(guān)系式;
(2)設(shè)此二次函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)為C,當(dāng)△AMC的面積為△ABC面積的
5
4
倍時(shí),求a的值;
(3)是否存在實(shí)數(shù)a,使得△ABC為直角三角形?若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是平行四邊形,AB=3,AD=
5
,高DE=2,建立如圖所示的平面直角坐標(biāo)系,其中點(diǎn)A與坐標(biāo)原點(diǎn)重合,CB的延長(zhǎng)線與y軸交于點(diǎn)F,且F(0,-6).
(1)求點(diǎn)D的坐標(biāo);
(2)求經(jīng)過點(diǎn)B、D、F的拋物線的解析式;
(3)判斷平行四邊形ABCD的對(duì)角線交點(diǎn)G是否在(2)中的拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

要修建一個(gè)圓形噴水池,在池中心豎直安裝一根帶有噴水頭的水管.噴出的水所形成的水流的形狀是拋物線,如果要求水流的最高點(diǎn)到水管的水平距離為1m,距離地面的高度為3m,水流落地處到水管的水平距離是3m,求這根帶有噴水頭的水管在地面以上的高度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

Rt△ABC的三個(gè)頂點(diǎn)A,B,C均在拋物線y=x2上,并且斜邊AB平行于x軸.若斜邊上的高為h,則( 。
A.h<1B.h=1C.1<h<2D.h>2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,小明把一張長(zhǎng)為20cm,寬為10cm的矩形硬紙板的四周各剪去一個(gè)同樣大小的正方形,再折合成一個(gè)無蓋的長(zhǎng)方體盒子.設(shè)剪去的正方形邊長(zhǎng)為x(cm),折成的長(zhǎng)方體盒子的側(cè)面積為y(cm2),底面積為S(cm2).
(1)求S與x之間的函數(shù)關(guān)系式,并求S=44(cm2)時(shí)x的值;(結(jié)果可保留根式)
(2)求y與x之間的函數(shù)關(guān)系式;在x的變化過程中,y會(huì)不會(huì)有最大值?x取何值時(shí)取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商場(chǎng)試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于50%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價(jià)x(元)的關(guān)系符合一次函數(shù)y=-x+140.
(1)直接寫出銷售單價(jià)x的取值范圍.
(2)若銷售該服裝獲得利潤為W元,試寫出利潤W與銷售單價(jià)x之間的關(guān)系式;銷售單價(jià)為多少元時(shí),可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,鉛球的出手點(diǎn)C距地面1米,出手后的運(yùn)動(dòng)路線是拋物線,出手后4秒鐘達(dá)到最大高度3米,則鉛球運(yùn)行路線的解析式為( 。
A.h=-
3
16
t2
B.y=-
3
16
t2+t
C.h=-
1
8
t2+t+1
D.h=-
1
3
t2+2t+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,橋拱是拋物線形,其函數(shù)解析式是y=-
1
4
x2,當(dāng)水位線在AB位置時(shí),水面寬為12米,這時(shí)水面離橋頂?shù)母叨萮是______米.

查看答案和解析>>

同步練習(xí)冊(cè)答案