【題目】為了迎接旅發(fā)大會(huì)順利在織金召開,織金某巡警騎摩托車在南北大道上巡邏,一天他從崗?fù)こ霭l(fā),晚上停留在A處,規(guī)定向北方向?yàn)檎?dāng)天行駛情況記錄如下(單位:千米):+10,﹣8+7,﹣15,+6,﹣16+4,﹣4

1A處在崗?fù)ず畏剑烤嚯x崗?fù)ざ噙h(yuǎn)?

2)若摩托車每行駛1千米耗油0.5升,這一天共耗油多少升?

【答案】1)南方,16千米處;(235

【解析】

1)根據(jù)有理數(shù)的加法運(yùn)算,求出各數(shù)的和,再根據(jù)和的大小,向北記為正,向南為負(fù),可判斷位置;
2)根據(jù)行車就耗油,求出各數(shù)絕對值的和再做乘法可得總耗油量.

解:(110+-8+7+-15+6+-16+4+-4=-16千米,

由題意知-16千米表示在崗?fù)つ戏?/span>16千米.
答:A在崗?fù)つ戏,距崗(fù)?/span>14千米;

2)這天行的總路程:

=10+8+7+15+6+16+4+4

=70千米

耗油量為:70×0.5=35

答:這一天共耗油35.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn) A,BC,D 依次在同一條直線上,點(diǎn) EF 分別在直線 AD 的兩側(cè),已知 BE//CF,∠A=D,AE=DF

(1)求證:四邊形 BFCE 是平行四邊形.

(2)若 AD=10EC=3,∠EBD=60°,當(dāng)四邊形 BFCE是菱形時(shí),求 AB 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線MN表示一條鐵路,A,B是兩個(gè)城市,它們到鐵路的垂直距離分別為AA1=20km,BB1=40km,已知A1B1=80km,現(xiàn)要在A1,B1之間設(shè)一個(gè)中轉(zhuǎn)站P,使兩個(gè)城市到中轉(zhuǎn)站的距離之和最短,請你設(shè)計(jì)一種方案確定P點(diǎn)的位置,并求這個(gè)最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾的探究片段,完成所提出的問題.

探究1:如圖1,在ABC中,O是∠ABC與∠ACB的平分線BOCO的交點(diǎn),通過分析發(fā)現(xiàn)∠BOC=90°+,理由如下:

BOCO分別是∠ABC和∠ACB的角平分線

∴∠1=ABC,2=ACB

∴∠1+2= (ABC+ACB)

又∵∠ABC+ACB=180°-A

∴∠1+2= (180°A)=90°A

∴∠BOC=180°-(1+2)=180°-(90°-A)=90°+A

探究2:如圖2,O是∠ABC與外角∠ACD的平分線BOCO的交點(diǎn),試分析∠BOC與∠A有怎樣的關(guān)系?請說明理由.

探究3:如圖3中,O是外角∠DBC與外角∠ECB的平分線BOCO的交點(diǎn),則∠BOC與∠A有怎樣的關(guān)系?(只寫結(jié)論,不需證明)

結(jié)論:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,表示甲、乙兩同學(xué)沿同一條路到達(dá)目的地過程中,路程S(千米)與時(shí)間t(小時(shí))之間關(guān)系的圖象,根據(jù)圖象中提供的信息回答問題:

(1)乙的速度為_______千米/時(shí);

(2)兩人在乙出發(fā)后________小時(shí)相遇;

(3)點(diǎn)A處對應(yīng)的數(shù)字為_________;

(4)甲在出發(fā)后1小時(shí)至2.5小時(shí)之間的速度為_________千米/時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上點(diǎn)AB分別表示的數(shù)是、,AB兩點(diǎn)間的距離為AB

(1) a=6,b=4,AB= ;若a=-6,b=4,AB=

(2) A、B兩點(diǎn)間的距離記為,試問、有何數(shù)量關(guān)系?

(3)寫出所有符合條件的整數(shù)點(diǎn)P,使它到5-5的距離之和為10,并求所有這些整數(shù)的和.

(4)|x-1|+|x+2|取得的值最小為 ,|x-1|-|x+2|取得最大值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△APB中,AB=2,∠APB=90°,在AB的同側(cè)作正△ABD、正△APE和正△BPC,則四邊形PCDE面積的最大值是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于EF點(diǎn),若點(diǎn)DBC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則周長的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著改革開放進(jìn)程的推進(jìn),改變的不僅僅是人們的購物模式,就連支付方式也在時(shí)代的浪潮中發(fā)生著天翻地覆的改變,除了現(xiàn)金、銀行卡支付以外,還有微信、支付寶以及其他支付方式.在一次購物中,小明和小亮都想從微信、支付寶、銀行卡三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

同步練習(xí)冊答案