如圖,在平行四邊形ABCD中,DB=DC,∠A=70°,CE⊥BD于E,則∠BCE=
▲ °.
由平行四邊形ABCD中,易得∠BCD=∠A=70°,又因為DB=DC,所以∠DBC=∠DCB=70°;再根據(jù)CE⊥BD,可得∠BCE=20°.
解答:解:∵四邊形ABCD是平行四邊形,
∴∠BCD=∠A=70°,
∵DB=DC,
∴∠DBC=∠DBC=70°,
∵CE⊥BD,
∴∠CEB=90°,
∴∠BCE=20°.
故答案為:20°.
練習冊系列答案
相關習題
科目:初中數(shù)學
來源:不詳
題型:填空題
若正方形的邊長為3,則螞蟻從其一個頂點爬行到相對頂點的最短距離為 .
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
如圖1,在
□ABCD中,
AE⊥
BC于
E,
E恰為
BC的中點,
AD=
AE.
小題1:(1)如圖2,點
P在線段
BE上,作
EF⊥
DP于點
F,連結
AF.
求證:
;
小題2:(2)請你在圖3中畫圖探究:當
P為射線
EC上任意一點(
P不與點
E重合)時,作
EF⊥
DP于點
F,連結
AF,線段
DF、
EF與
AF之間有怎樣的數(shù)量關系?直接寫出你的結論.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:填空題
如圖所示,一張矩形紙片沿BC折疊,頂點A落在點A′處,再過點A′折疊使折痕DE∥BC,若AB=4,AC=3,則△ADE的面積是
★ .
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
(本題滿分10分)如圖,四邊形
ABCD為直角梯形
,
AD‖BC,
,
,
.
動點
P、
Q分別從
A、
C兩點同時出發(fā),點
P以每秒1個單
位的速度由
A向
D運動,點
Q以每秒2個單位的速度由
C向
B運動,當點
Q停
止運動時,點P也停止運動,設運動時間為
(0≤
≤5),
小題1:(1)當
t為多少時,四邊形
PQCD是平行四邊形?
小題2:(2)當
t為多少時,四邊形
PQCD是等腰梯形?
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:填空題
如圖,菱形
ABCD中,對角線
AC,
BD相交于點
,若
AC=
AB=2,
BD=
.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
將矩形紙片ABCD按如圖所示的方式折疊,AE、EF為折痕,∠BAE=30°, AB=
,折疊后,點C落在AD邊上的C
1處,并且點B落在EC
1邊上的B
1處.則BC的長為().
A. | B.2 | C.3 | D. |
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:填空題
如圖,梯形ABCD中,AD∥BC,∠D=Rt∠,BC=CD=12,∠ABE=45°,點E在DC上,AE,BC的延長線相交于點F,若AE=10,則S
△ADE+S
△CEF的值是
.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
折疊長方形紙片ABCD(四個內角都是直角)的一邊AD,使點D落在BC邊的點F處,已知AB=8cm,BC=10cm,
小題1:求BF的長;
小題2:(2)求EF的長;(8分)
查看答案和解析>>