【題目】RtABC中,AB=1,A=60°,ABC=90°,如圖所示將RtABC沿直線l無(wú)滑動(dòng)地滾動(dòng)至RtDEF,則點(diǎn)B所經(jīng)過的路徑與直線l所圍成的封閉圖形的面積為_____.(結(jié)果不取近似值)

【答案】π+

【解析】先得到∠ACB=30°,BC=,利用旋轉(zhuǎn)的性質(zhì)可得到點(diǎn)B路徑分部分:第一部分為以直角三角形30°的直角頂點(diǎn)為圓心,為半徑,圓心角為150°的弧長(zhǎng);第二部分為以直角三角形60°的直角頂點(diǎn)為圓心,1為半徑,圓心角為120°的弧長(zhǎng),第三部分為ABC的面積;然后根據(jù)扇形的面積公式計(jì)算點(diǎn)B所經(jīng)過的路徑與直線l所圍成的封閉圖形的面積.

RtABC中,∠A=60°,ABC=90°,

∴∠ACB=30°,BC=,

RtABC沿直線l無(wú)滑動(dòng)地滾動(dòng)至RtDEF,點(diǎn)B路徑分部分:第一部分為以直角三角形30°的直角頂點(diǎn)為圓心,為半徑,圓心角為150°的弧長(zhǎng);第二部分為以直角三角形60°的直角頂點(diǎn)為圓心,1為半徑,圓心角為120°的弧長(zhǎng);第三部分為ABC的面積.

∴點(diǎn)B所經(jīng)過的路徑與直線l所圍成的封閉圖形的面積

=

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD(紙片)折疊,使點(diǎn)BAD邊上的點(diǎn)K重合,EG為折痕;點(diǎn)CAD邊上的點(diǎn)K重合,FH為折痕.已知∠1=67.5°,2=75°,EF=+1,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC,BAC=60°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與BC重合),AD為邊在AD右側(cè)作菱形ADEF,使∠DAF=60°,連接CF

1)觀察猜想如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),ABCF的位置關(guān)系為   

BC,CD,CF之間的數(shù)量關(guān)系為   

2)數(shù)學(xué)思考如圖2當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立請(qǐng)給予證明;若不成立請(qǐng)你寫出正確結(jié)論再給予證明.

3)拓展延伸如圖3,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí)設(shè)ADCF相交于點(diǎn)G,若已知AB=4,CD=AB,AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究

(1)已知如圖1,若ABCD,P為平行線內(nèi)的一點(diǎn)請(qǐng)你判斷∠B+P+D= 度,并說明理由.

(2)如圖2,若ABCD P1、P2為平行線內(nèi)的兩個(gè)點(diǎn),請(qǐng)求出∠B+P1+P2+D= (不需要說明理由)

(3)如圖3,如此類推若ABCDP1、P2、P3、P4……Pn為平行線內(nèi)的n個(gè)點(diǎn),請(qǐng)求出∠B+P1+P2+P3+……+Pn-1+Pn+D= (不需要說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,一次函數(shù)y=(1-3kx+2k-1,試回答:

1k為何值時(shí),yx的增大而減?

2k為何值時(shí),圖像與y軸交點(diǎn)在x軸上方?

3) 若一次函數(shù)y=(1-3kx+2k-1經(jīng)過點(diǎn)(3,4).請(qǐng)求出一次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,已知線段 AB=12 cm,點(diǎn) C 為線段 AB 上的一動(dòng)點(diǎn)(點(diǎn) C 不與 A,B 重合),點(diǎn)D,E 分別是 AC BC 的中點(diǎn).

1)若點(diǎn) C 恰好是 AB 的中點(diǎn),則 DE= cm;

2)若 AC=4 cm,求 DE的長(zhǎng);

3)試說明當(dāng)點(diǎn)C在線段 AB 上運(yùn)動(dòng)時(shí),DE 的長(zhǎng)不變;

4)如圖 2,已知∠AOB=120°,在∠AOB 的內(nèi)部任畫一條射線 OC

①請(qǐng)分別畫出∠AOC 和∠COB 的平分線 OD,OE(不要求尺規(guī)作圖);

②說明∠DOE 的度數(shù)與射線 OC 的位置無(wú)關(guān).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】城區(qū)某新建住宅小區(qū)計(jì)劃購(gòu)買并種植甲、乙兩種樹苗共300株.已知甲種樹苗每株60元,乙種樹苗每株90元.

1)若購(gòu)買樹苗共用21000元,問甲、乙兩種樹苗應(yīng)各買多少株?

2)據(jù)統(tǒng)計(jì),甲、乙兩種樹苗每株樹苗對(duì)空氣的凈化指數(shù)分別為,問如何購(gòu)買甲、乙兩種樹苗才能保證該小區(qū)的空氣凈化指數(shù)之和等于90?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道:有兩條邊相等的三角形叫做等腰三角形。類似地,我們定義:至少有一組對(duì)邊相等的四邊形叫做等對(duì)邊四邊形.

1)請(qǐng)你寫出一個(gè)等對(duì)邊四邊形的名稱;

2)如圖,在ABC中,點(diǎn)DE分別在AB、AC上,設(shè)CD、BE相交于點(diǎn)O,若∠A=50°,.請(qǐng)寫出圖中其余等于50°的角,并猜想圖中哪個(gè)四邊形為等對(duì)邊四邊形(不需證明);

3)在中,如果∠A是不等于50°的銳角,點(diǎn)DE分別在AB、AC上,且.探究:滿足上述條件的圖形中是否存在等對(duì)邊四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,將矩形ABCD沿對(duì)角線BD對(duì)折,使點(diǎn)C落在處,連接BAD于點(diǎn)EAB=4, BC=6.

求證: (1)AE=E (2)△EBD面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案