【題目】在等邊三角形ABC中,點P在△ABC內(nèi),點Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.
(1)求證:△ABP≌△ACQ;
(2)請判斷△APQ是什么三角形,試說明你的結論.
【答案】(1)證明見解析;(2) △APQ是等邊三角形.
【解析】(1)由△ABC是等邊三角形,可得AB=AC,結合已知∠ABP=∠ACQ,BP=CQ,利用SAS,即可得出△ABP≌△ACQ;
(2)由△ABP≌△ACQ,可得AP=AQ,∠BAP=∠CAQ,再由∠BAP+∠CAP=60°,可得∠PAQ=60°,即可得出△APQ是等邊三角形.
(1)∵△ABC為等邊三角形,
∴AB=AC,
又∵∠ABP=∠ACQ,BP=CQ,
∴△ABP≌△ACQ(SAS);
(2)△APQ為等邊三角形.
理由如下:∵△ABP≌△ACQ,
∴∠BAP=∠CAQ,AP=AQ,
∵△ABC為等邊三角形,∴∠BAC=60°,
∴∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,
∴△APQ是等邊三角形.
科目:初中數(shù)學 來源: 題型:
【題目】已知y=(3-2m)x+m-1是y關于x的一次函數(shù).
(1)若y隨著x的增大而減小,求m的取值范圍;
(2)若函數(shù)的圖象與直線y=-3x平行,試確定該函數(shù)的表達式;
(3)若函數(shù)的圖象經(jīng)過點(-1,5m+2),試確定該函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(1,0).
(1)當b=2,c=﹣3時,求二次函數(shù)的解析式及二次函數(shù)最小值;
(2)二次函數(shù)的圖象經(jīng)過點B(m,e),C(3﹣m,e). ①求該二次函數(shù)圖象的對稱軸;
②若對任意實數(shù)x,函數(shù)值y都不小于 ﹣ ,求此時二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,△OBC的頂點分別為O(0,0),B(3,﹣1)、C(2,1).
(1)以點O(0,0)為位似中心,按比例尺2:1在位似中心的異側將△OBC放大為△OB′C′,放大后點B、C兩點的對應點分別為B′、C′,畫出△OB′C′ , 并寫出點B′、C′的坐標:B′( , ),C′( , );
(2)在(1)中,若點M(x,y)為線段BC上任一點,寫出變化后點M的對應點M′的坐標( , ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形紙片ABCD的邊長為3,點E、F分別在邊BC、CD上,將AB、AD分別沿AE、AF折疊,點B,D恰好都落在點G處,已知BE=1,則EF的長為( )
A.1.5
B.2.5
C.2.25
D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,AC=6,BC=8,AB=10,∠BCA的平分線與AB邊的垂直平分線相交于點D,DE⊥AC,DF⊥BC,DG⊥AB,垂足分別是E,F,G.
(1)求證:AE=BF;
(2)求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為直線AB上一點,OD平分∠AOC,∠DOE=90°.
(1)請你數(shù)一數(shù),圖中有 個小于平角的角;
(2)若∠AOC=50°,則∠COE的度數(shù)= ,∠BOE的度數(shù)= ;
(3)猜想:OE是否平分∠BOC?請通過計算說明你猜想的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖△OPQ是邊長為 的等邊三角形,若反比例函數(shù)y= 的圖像過點P. (Ⅰ)求點P的坐標和k的值;
(Ⅱ)若在這個反比例函數(shù)的圖像上有兩個點(x1 , y1)(x2 , y2),且x1<x2<0,請比較y1與y2的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列式子中是代數(shù)式________;是單項式________;是整式________;是多項式________.
,,,,,,,,,,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com