【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(﹣1,0),B3,0),C0,3)三點(diǎn).

1)求拋物線的解析式;

2)點(diǎn)M是線段BC上的點(diǎn)(不與B、C重合),過MNMy軸交拋物線于N,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用含m的代數(shù)式表示MN的長;

3)在(2)的條件下,連接NBNC,是否存在點(diǎn)m,使△BNC的面積最大?若存在,求m的值和△BNC的面積;若不存在,說明理由

【答案】1)拋物線的解析式:y=x2+2x+3;(2MN=m2+3m0m3);(3)存在,當(dāng)m=時(shí),△BNC的面積最大為

【解析】

1)已知了拋物線上的三個(gè)點(diǎn)的坐標(biāo),直接利用待定系數(shù)法即可求出拋物線的解析式.
2)先利用待定系數(shù)法求出直線BC的解析式,已知點(diǎn)M的橫坐標(biāo),代入直線BC、拋物線的解析式中,可得到MN點(diǎn)的坐標(biāo),NM縱坐標(biāo)的差的絕對(duì)值即為MN的長.
3)設(shè)MNx軸于D,那么的面積可表示為:,MN的表達(dá)式在(2)中已求得,OB的長易知,由此列出關(guān)于 的函數(shù)關(guān)系式,即可得出結(jié)論.

解:

(1)設(shè)

,,,

,

(2)設(shè)直線BC的解析式為

,

,

已知點(diǎn)M的橫坐標(biāo)為

,

(3)


如圖可知:,

=

∴當(dāng)時(shí),的面積最大,最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 RtABC 中BC=2,以 BC 的中點(diǎn) O 為圓心的⊙O 分別與 AB,AC 相切于 DE 兩點(diǎn),的長為(

A.B.C.πD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售水果時(shí),將A、B、C三種水果采用甲、乙、丙三種方式搭配裝箱進(jìn)行銷售,毎箱的成本分別為箱中A、BC三種水果的成本之和,箱子成本忽略不計(jì).甲種方式每箱分別裝AB、C三種水果6kg3kg、1kg,乙種方式每分別裳AB、C三種水果2kg、6kg2kg,甲每箱的總成本是每千克A成本的15倍,每箱甲的銷售利潤率為20%,每箱甲比每箱乙的售價(jià)低25%;丙每箱在成本上提高40%標(biāo)價(jià)后打八折銷售獲利為每千克A成本的1.2倍,當(dāng)銷售甲、乙、丙三種方式的水果數(shù)量之比為215時(shí),則銷售的總利潤率為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,.求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,,對(duì)角線,相交于點(diǎn),點(diǎn)分別從,兩點(diǎn)同時(shí)出發(fā),以的速度沿,運(yùn)動(dòng),到點(diǎn),時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,的面積為,則的函數(shù)關(guān)系可用圖象表示為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B90°,ABBC4,把△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°得到△ADE,過點(diǎn)CCFAEFDECFG,則四邊形ADGF的周長是(  )

A.8B.4+4C.8+D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩個(gè)二次函數(shù)的圖象的頂點(diǎn)、開口方向都相同,則稱這兩個(gè)二次函數(shù)為“同類二次函數(shù)”.

1)請(qǐng)直接寫出兩個(gè)為“同類二次函數(shù)”的函數(shù);

2)已知關(guān)于x的二次函數(shù)y1=(x+223y2ax2+bx1,若y1+y2y1為“同類二次函數(shù)”,求函數(shù)y2的表達(dá)式,并求出當(dāng)﹣3x0時(shí),y2的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O的半徑為1,DEO的直徑,過點(diǎn)DO的切線AD,CAD的中點(diǎn),AEOB點(diǎn),四邊形BCOE是平行四邊形.

1)求AD的長;

2BCO的切線嗎?若是,給出證明;若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購買飲料,每種飲料被選中的可能性相同.

1)若他去買一瓶飲料,則他買到奶汁的概率是 ;

2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請(qǐng)用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.

查看答案和解析>>

同步練習(xí)冊答案