如圖,在梯形ABCD中,AD∥BC,∠ADB=∠CDE,DE⊥BC于D,且BD:DE=2:1,則△BDE的面積與△DEC的面積比為( )

A.2:1
B.5:2
C.3:1
D.4:1
【答案】分析:根據(jù)相似三角形的判定定理及性質(zhì)解答即可.
解答:解:∵AD∥BC,
∴△BDE∽△DEC,
∴∠ADB=∠DBE,
又∵∠ADB=∠CDE,DE⊥BC,
∵BD:DE=2:1,∴BE:DE=:1,
∴△BDE和△DEC的相似比是:1,面積的比是3:1.
故選C.
點(diǎn)評:此題比較簡單,考查相似三角形的性質(zhì).利用相似三角形的性質(zhì)時(shí),要注意相似比的順序,同時(shí)也不能忽視面積比與相似比的關(guān)系.相似比是聯(lián)系周長、面積、對應(yīng)線段等的媒介,也是相似三角形計(jì)算中常用的一個(gè)比值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊答案