【題目】已知拋物線y=2x2+4x+k﹣1(k為大于2的正整數(shù))與x軸有交點(diǎn).
(1)求k的值及拋物線y=2x2+4x+k﹣1的對(duì)稱(chēng)軸;
(2)將拋物線y=2x2+4x+k﹣1在直線y=2上方的部分沿直線y=2翻折,其余部分不變,得到一個(gè)新圖象,當(dāng)直線y=x+b與此圖象有兩個(gè)公共點(diǎn)時(shí),求b的取值范圍.
【答案】(1)k=3;x=﹣1;(2)2<b<3或b<
【解析】
(1)令y=0,由一元二次方程根的判別式,即可求出k的取值范圍,庵后得到k的值;由拋物線的對(duì)稱(chēng)軸公式,即可求出對(duì)稱(chēng)軸;
(2)根據(jù)題意,畫(huà)出翻折后的圖形,然后找出有兩個(gè)函數(shù)有兩個(gè)交點(diǎn)的臨界點(diǎn),求出臨界點(diǎn)是b的值,然后即可得到b的取值范圍.
解:(1)∵拋物線y=2x2+4x+k-1與x軸有交點(diǎn),
∴42-42(k-1)=24-8k≥0,
解得:k≤3,
∵k為大于2的正整數(shù),
∴k=3.
∴拋物線的解析式為:y=2x2+4x+2,
其對(duì)稱(chēng)軸為:x=﹣=﹣1;
(2)將拋物線y=2x2+4x+2在直線y=2上方的部分沿直線y=2翻折,
得到的圖象的解析式為:y=﹣2(x+1)2+4,
依題意可作翻折后的圖象如圖所示.
由圖象可知,直線y=x+b與新圖象有兩個(gè)交點(diǎn),包括如下兩種情況:
①應(yīng)使直線在點(diǎn)(﹣1,0)的下方,當(dāng)直線y=x+b經(jīng)過(guò)點(diǎn)A(﹣1,0)時(shí),
可得b=,此時(shí)b<,直線y=x+b與新圖象有兩個(gè)交點(diǎn).
②當(dāng)直線y=x+b經(jīng)過(guò)點(diǎn)B(﹣2,2)時(shí),
可得b=3;
當(dāng)直線y=x+b經(jīng)過(guò)點(diǎn)C(O,2)時(shí),可得b=2
由圖象可知,符合題意的b的取值范圍為:2<b<3或b<.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某生物小組觀察一植物生長(zhǎng),得到的植物高度y(單位:厘米)與觀察時(shí)間x(單位:天)的關(guān)系,并畫(huà)出如圖所示的圖象(AC是線段,直線CD平行于x軸).下列說(shuō)法正確的是( ).
①?gòu)拈_(kāi)始觀察時(shí)起,50天后該植物停止長(zhǎng)高;
②直線AC的函數(shù)表達(dá)式為;
③第40天,該植物的高度為14厘米;
④該植物最高為15厘米.
A.①②③B.②④C.②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn).
(1)請(qǐng)直接寫(xiě)出A、B、C三點(diǎn)的坐標(biāo):
A B C
(2)點(diǎn)P從點(diǎn)A出發(fā),在線段AB上以每秒3個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q 從點(diǎn)B出發(fā),在線段BC上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng).其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),
① 當(dāng)t為何值時(shí),BP=BQ?
② 是否存在某一時(shí)刻t,使△BPQ是直角三角形?若存在,請(qǐng)求出所有符合條件的t的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,位于第二象限的點(diǎn)在反比例函數(shù)的圖像上,點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),直線經(jīng)過(guò)點(diǎn),且與反比例函數(shù)的圖像交于點(diǎn).
(1)當(dāng)點(diǎn)的橫坐標(biāo)是-2,點(diǎn)坐標(biāo)是時(shí),分別求出的函數(shù)表達(dá)式;
(2)若點(diǎn)的橫坐標(biāo)是點(diǎn)的橫坐標(biāo)的4倍,且的面積是16,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,下列正方形網(wǎng)格的每個(gè)小正方形的邊長(zhǎng)均為1,⊙O的半徑為.規(guī)定:頂點(diǎn)既在圓上又是正方形格點(diǎn)的直角三角形稱(chēng)為“圓格三角形”,請(qǐng)按下列要求各畫(huà)-個(gè)“圓格三角形”.
①直角邊長(zhǎng)度為整數(shù),②面積為8,③一個(gè)內(nèi)角所對(duì)的弧長(zhǎng)為π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在平面直角坐標(biāo)系中A(5,0),B為y軸上任意一點(diǎn),以點(diǎn)B為直角頂點(diǎn)作等腰Rt△ABC(點(diǎn)A、B、C按順時(shí)針?lè)较蚺帕校?qǐng)?zhí)骄奎c(diǎn)C是否在一確定的直線上;
(2)在平面直角坐標(biāo)系中,A(﹣1,0),B(4,2m),連接AB,將AB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°到CB,請(qǐng)?zhí)骄奎c(diǎn)C是否在一確定的直線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線過(guò)點(diǎn),且與直線交于B、C兩點(diǎn),點(diǎn)B的坐標(biāo)為.
(1)求拋物線的解析式;
(2)點(diǎn)D為拋物線上位于直線上方的一點(diǎn),過(guò)點(diǎn)D作軸交直線于點(diǎn)E,點(diǎn)P為對(duì)稱(chēng)軸上一動(dòng)點(diǎn),當(dāng)線段的長(zhǎng)度最大時(shí),求的最小值;
(3)設(shè)點(diǎn)M為拋物線的頂點(diǎn),在y軸上是否存在點(diǎn)Q,使?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,,以為直徑作半圓,圓心為點(diǎn);以點(diǎn)為圓心,為半徑作,過(guò)點(diǎn)作的平行線交兩弧于點(diǎn)、,則圖中陰影部分的面積是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動(dòng)點(diǎn).
(1)求拋物線的解析式;(2)過(guò)點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com