【題目】如圖,菱形和菱形的邊長分別為,,則圖中陰影部分的面積是(

A. B. C. D.

【答案】A

【解析】

設(shè)BFCE于點(diǎn)H,根據(jù)菱形的對邊平行,利用相似三角形對應(yīng)邊成比例列式求出CH,然后求出DH,根據(jù)菱形鄰角互補(bǔ)求出∠ABC=60°,再求出點(diǎn)BCD的距離以及點(diǎn)GCE的距離;然后根據(jù)陰影部分的面積=SBDH+SFDH,根據(jù)三角形的面積公式列式進(jìn)行計(jì)算即可得解.

如圖,設(shè)BFCE于點(diǎn)H,

∵菱形ECGF的邊CEGF,

BCHBGF,

CH:FG=BC:BG,

CH:4=2:6,

解得

所以,

∴點(diǎn)BCD的距離為

點(diǎn)GCE的距離為

∴陰影部分的面積=SBDH+SFDH

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn),,拋物線與直線交于點(diǎn)

當(dāng)拋物線經(jīng)過點(diǎn)時(shí),求它的表達(dá)式;

設(shè)點(diǎn)的縱坐標(biāo)為,求的最小值,此時(shí)拋物線上有兩點(diǎn),,且,比較的大;

當(dāng)拋物線與線段有公共點(diǎn)時(shí),直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,點(diǎn)B、F、C、E在同一直線上,AC、DF相交于點(diǎn)G,ABBE,垂足為B,DEBE,垂足為E,且AC=DF,BF=EC.求證:

(1)ABC≌△DEF

(2)FG=CG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面一元二次方程的解法中,正確的是(

A. (x-3)(x-5)=10×2,x-3=10,x-5=2,x1=13,x2=7

B. (2-5x)+(5x-2)2=0,(5x-2)(5x-3)=0,x1=,x2=

C. (x+2)2+4x=0,x1=2,x2=-2

D. x2=x 兩邊同除以x,得x=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,都為,,,…中的數(shù),若方程至少有一根也是,,…中的數(shù),就稱該方程為漂亮方程,則漂亮方程的個(gè)數(shù)為(

A. 8 B. 10 C. 12 D. 14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的網(wǎng)格中有四條線段AB、CD、EF、GH(線段端點(diǎn)在格點(diǎn)上),

選取其中三條線段,使得這三條線段能圍成一個(gè)直角三角形.

答:選取的三條線段為

只變動(dòng)其中兩條線段的位置,在原圖中畫出一個(gè)滿足上題的直角三角形(頂點(diǎn)仍在格點(diǎn),并標(biāo)上必要的字母).

答:畫出的直角三角形為△

所畫直角三角形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,將矩形沿折疊,使點(diǎn)與點(diǎn)重合,則折痕的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠ACB=90°AD平分∠BAC,過點(diǎn)DAC的平行線交AB于點(diǎn)O,DEADAB于點(diǎn)E.

(1)求證:點(diǎn)OAE的中點(diǎn);

(2)若點(diǎn)FAC邊上一點(diǎn),且OF=OA,連接EF,如圖2,判斷EFAC的位置關(guān)系,并說明理由;

(3)在(2)的條件下,試探究線段AE、AF、AC之間滿足的等量關(guān)系,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知甲村和乙村靠近公路a、b,為了發(fā)展經(jīng)濟(jì),甲乙兩村準(zhǔn)備合建一個(gè)工廠,經(jīng)協(xié)商,工廠必須滿足以下要求:

(1)到兩村的距離相等;

(2)到兩條公路的距離相等.你能幫忙確定工廠的位置嗎?

查看答案和解析>>

同步練習(xí)冊答案