如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(﹣4,0),點(diǎn)B的坐標(biāo)是(0,b)(b>0).P是直線AB上的一個(gè)動(dòng)點(diǎn),作PC⊥x軸,垂足為C.記點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)為P´(點(diǎn)P´不在y軸上),連接PP´,P´A,P´C.設(shè)點(diǎn)P的橫坐標(biāo)為a.

 

 

 

 

 

 

 

 


(1)當(dāng)b=3時(shí),

①求直線AB的解析式;

②若點(diǎn)P′的坐標(biāo)是(﹣1,m),求m的值;

(2)若點(diǎn)P在第一象限,記直線AB與P´C的交點(diǎn)為D.當(dāng)P´D:DC=1:3時(shí),求a的值;

(3)是否同時(shí)存在a,b,使△P´CA為等腰直角三角形?若存在,請(qǐng)求出所有滿足要求的a,b的值;若不存在,請(qǐng)說明理由.

 

【答案】

(1)①y=x+3②(2)(3)

【解析】解:(1)①設(shè)直線AB的解析式為y=kx+3,

把x=﹣4,y=0代入得:﹣4k+3=0,

∴k=,

∴直線的解析式是:y=x+3, ……3分 

②由已知得點(diǎn)P的坐標(biāo)是(1,m),

∴m=×1+3=;  ……4分 

(2)∵PP′∥AC,

△PP′D∽△ACD,

=,即=,

∴a=;   ……6分 

(3)以下分三種情況討論.

①當(dāng)點(diǎn)P在第一象限時(shí),

1)若∠AP′C=90°,P′A=P′C(如圖1)

過點(diǎn)P′作P′H⊥x軸于點(diǎn)H.

∴PP′=CH=AH=P′H=AC.

∴2a=(a+4)

∴a=

∵P′H=PC=AC,△ACP∽△AOB 

==,即=,

∴b=2                   ……8分 

2)若∠P′AC=90°,P′A=CA  (如圖2)

則PP′=AC

∴2a=a+4

∴a=4

∵P′A=PC=AC,△ACP∽△AOB

==1,即=1

∴b=4          ……10分 

3)若∠P′CA=90°,

則點(diǎn)P′,P都在第一象限內(nèi),這與條件矛盾.

∴△P′CA不可能是以C為直角頂點(diǎn)的等腰直角三角形.

②當(dāng)點(diǎn)P在第二象限時(shí),∠P′CA為鈍角(如圖3),此時(shí)△P′CA不可能是等腰直角三角形;

③當(dāng)P在第三象限時(shí),∠P′CA為鈍角(如圖4),此時(shí)△P′CA不可能是等腰直角三角形.

∴所有滿足條件的a,b的值為

      ……12分 

(1)利用待定系數(shù)法即可求得函數(shù)的解析式;

(2)把(-1,m)代入函數(shù)解析式即可求得m的值;可以證明△PP′D∽△ACD,根據(jù)相似三角形的對(duì)應(yīng)邊的比相等,即可求解;

(3)點(diǎn)P在第一像限,若使△P'CA為等腰直角三角則∠AP′C=90°或∠P′AC=90°或∠P′CA=90°就三種情況分別討論求出出所有滿足要求的a的值即可.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案