【題目】為了參觀上海世博會,某公司安排甲、乙兩車分別從相距300千米的上海、泰州兩地同時出發(fā)相向而行,甲到泰州帶客后立即返回,下圖是它們離各自出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)圖像.
(1)請直接寫出甲離出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)它們行駛4.5小時后離各自出發(fā)點的距離相等,求乙車離出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,甲、乙兩車從各自出發(fā)地駛出后經(jīng)過多少時間相遇?
【答案】
(1)解:甲離出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式為
(2)解:由題意知,圖中AB與OC的交點P的橫坐標(biāo)為4.5,
代入AB的解析式求得P點的縱坐標(biāo)為180.
得OC解析式為y=40x,當(dāng)y=300時, .
即乙車離出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式為
(3)解:由題意可知有兩次相遇.①當(dāng)0≤x≤3時,100x+40x=300,解得 ;
②當(dāng) 時,(540﹣80x)+40x=300,解得x=6.
綜上所述,兩車第一次相遇時間為出發(fā)后 小時,第二次相遇時間為出發(fā)后6小時.
【解析】(1)從0到3圖像是正比例函數(shù),從3小時后是一次函數(shù),(2)當(dāng)它們行駛4.5小時后離各自出發(fā)點的距離相等,寫出兩直線的交點,可以求出乙車離出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,(3)兩車相遇,所走的路程為300,列出等量關(guān)系式,求得時間.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線C1:y=x2+bx+c經(jīng)過原點,與x軸的另一個交點為(2,0),將拋物線C1向右平移m(m>0)個單位得到拋物線C2 , C2交x軸于A,B兩點(點A在點B的左邊),交y軸于點C.
(1)求拋物線C1的解析式及頂點坐標(biāo);
(2)以AC為斜邊向上作等腰直角三角形ACD,當(dāng)點D落在拋物線C2的對稱軸上時,求拋物線C2的解析式;
(3)若拋物線C2的對稱軸存在點P,使△PAC為等邊三角形,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸、軸分別交于點,.點的坐標(biāo)為(,0),點 的坐標(biāo)為(,0).
(1)求的值;
(2)若點(,)是第二象限內(nèi)的直線上的一個動點.當(dāng)點運動過程中,試寫出的面積與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)探究:當(dāng)運動到什么位置時,的面積為,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為開展體育大課間活動,需要購買籃球與足球若干個.已知購買2個籃球和3個足球共需要380元;購買4個籃球和5個足球共需要700元.
(1)求購買一個籃球、一個足球各需多少元;
(2)若體育老師帶了8000元去購買這種籃球與足球共100個.由于數(shù)量較多,店主給出“一律打九折”的優(yōu)惠價,那么他最多能購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( )
A. 不帶根號的數(shù)不是無理數(shù)
B. 的立方根是±2
C. 絕對值等于的實數(shù)是
D. 每個實數(shù)都對應(yīng)數(shù)軸上一個點
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)居民利用“健步行APP”開展健步走活動,為了解居民的健步走情況,小文同學(xué)調(diào)查了部分居民某天行走的步數(shù)單位:千步,并將樣本數(shù)據(jù)整理繪制成如下不完整的頻數(shù)分布直方圖和扇形統(tǒng)計圖.
有下面四個推斷:
小文此次一共調(diào)查了200位小區(qū)居民;
行走步數(shù)為千步的人數(shù)超過調(diào)查總?cè)藬?shù)的一半;
行走步數(shù)為千步的人數(shù)為50人;
行走步數(shù)為千步的扇形圓心角是.
根據(jù)統(tǒng)計圖提供的信息,上述推斷合理的是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D,F分別在AB,AC上,CF=CB.連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CE,連接EF.
(1)求證:△BCD≌△FCE;
(2)若EF∥CD.求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠ABD的平分線BE交AD于點E,∠CDB的平分線DF交BC于點F.求證:四邊形DEBF是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com