18、某商店購進一批單價為20元的日用商品,如果以單價30元銷售,那么月內(nèi)可售出400件,根據(jù)銷售經(jīng)驗,提高銷售單價會導致銷量的減少,即銷售單價每提高1元,每月銷售量相應(yīng)減少20件,請寫出利潤y與單價x之間的函數(shù)關(guān)系式
y=-20x2+1400x-20000(20<x<50)
分析:單價為x元,單價提高了(x-30)元.原來每月能售出400件,每漲價1元,月銷售量就減少20件.漲(x-30)元,那么月銷售量就減少20×(x-30)件,為400-20×(x-30).利潤=每件利潤×數(shù)量即可求得解析式;
根據(jù)利潤y>0,月銷售量>0,可得到函數(shù)自變量的取值范圍.
解答:解:單價是x元,則銷量是:400-20×(x-30),
每件的盈利是x-20元,
則利潤y=(x-20)[400-20×(x-30)]=-20x2+1400x-20000,
根據(jù)x-20>0且400-20(x-30)>0,解得:20<x<50.
點評:根據(jù)題意,找到所求量的等量關(guān)系是解決問題的關(guān)鍵.難點是根據(jù)題意得到相應(yīng)的數(shù)量的代數(shù)式.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

24、某商店購進一批單價為8元的商品,如果按每件10元出,那么每天可銷售100件,經(jīng)調(diào)查發(fā)現(xiàn),這種商品的銷售單價每提高1元,其銷售量相應(yīng)減少10件.將銷售價定為多少,才能使每天所獲銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某商店購進一批單價為16元的日用品,銷售一段時間后,為了獲得更多利潤,商店決定提高銷售價格.經(jīng)試驗發(fā)現(xiàn),若按每件20元的價格銷售時,每月能賣360件;若按每件25元的價格銷售時,每月能賣210件.假定每月銷售件數(shù)y(件)是價格x(元/件)的一次函數(shù).
(1)試求y與x之間的關(guān)系式;
(2)在商品不積壓,且不考慮其它因素的條件下,問銷售價格定為多少時,才能使每月獲得最大利潤?每月的最大利潤是多少(總利潤=總收入-總成本)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•酒泉一模)某商店購進一批單價為8元的日用品,如果以單價10元出售,那么每天可以售出100件.根據(jù)銷售經(jīng)驗,這種日用品的銷售單價每提高1元,其銷售量相應(yīng)減少10件.將銷售價定為
14
14
元時,才能使每天所獲銷售利潤最大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某商店購進一批單價為20元的日用商品,如果以單價30元銷售那么半月內(nèi)可售出400件,根據(jù)銷售經(jīng)驗,推廣銷售單價會導致銷售量的減少,即銷售單價每提高1元,銷售量相應(yīng)減少20件.
(1)銷售單價提高多少元,可獲利4480元.
(2)如何提高售價,才能在半月內(nèi)獲得最大利潤?

查看答案和解析>>

同步練習冊答案