【題目】如圖(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D。AF平分∠CAB,交CD于點E,交CB于點F。
(1)求證:CE=CF。
(2)將圖(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使點E′落在BC邊上,其它條件不變,如圖(2)所示。試猜想:BE′與CF有怎樣的數(shù)量關系?請證明你的結(jié)論。
【答案】
(1)證明:∵AF平分∠CAB,∴∠CAF=∠EAD,∵∠ACB=90°,∴∠CAF+∠CFA=90°,∵CD⊥AB,∴∠EAD+∠AED=90°, ∴∠CFA=∠AED ,又∵∠AED=∠CEF,∴∠CFA=∠AED,∴CE=CF
(2)答: =CF. 過點E作EG⊥AC于點G,
∵AF平分∠CAB,ED⊥AB,EG⊥AC,
∴ED=EG,
∵△ADE平移得到 ,
∴ =DE,
∴ =GE,
∵∠ACB=90°,
∴∠ACD+∠DCB=90°,
∵CD⊥AB,
∴∠B+∠DCB=90°,
∴∠ACD=∠B,在△CEG和 中,
∵ ,∴△CEG≌ (AAS),∴CE= ,又∵CE=CF,∴ =CF
【解析】(1)求證CE=CF可由等角對等邊,即若∠CFA=∠AED,則CE=CF。由AF平分∠CAB,∠CAF=∠EAD再利用互余關系易得結(jié)果。
(2)過點E作EG⊥AC于點G,由角平分線的性質(zhì)可得ED=EG,再由平移可得 D ′ E ′ =GE,還有互余關系可得∠ACD=∠B,以及兩個直角,最后得證△CEG≌ △ B E ′ D ′推得 B E ′ =CF。
科目:初中數(shù)學 來源: 題型:
【題目】已知∠AOB=30°,點P在∠AOB內(nèi)部,P1與P關于OA對稱,P2與P關于OB對稱,則△P1OP2的形狀一定是( 。
A. 直角三角形 B. 等邊三角形 C. 底邊和腰不相等的等腰三角形 D. 鈍角三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,∠B=30°,CE平分∠ACB交⊙O于E,交AB于點D,連接AE,則S△ADE:S△CDB的值等于( )
A. 1: B. 1: C. 1:2 D. 2:3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A在y軸正半軸上,點B與點C都在x軸上,且點B在點C的左側(cè),滿足BC=OA.若﹣3am﹣1b2與anb2n﹣2是同類項且OA=m,OB=n,求出m和n的值以及點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若點A(2,﹣2),B(﹣1,﹣2),則直線AB與x軸和y軸的位置關系分別是( )
A.相交,相交
B.平行,平行
C.平行,垂直相交
D.垂直相交,平行
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】寨卡病毒是一種通過蚊蟲進行傳播的蟲媒病毒,其直徑約為0.0000021cm.將數(shù)據(jù)0.0000021用科學記數(shù)法表示為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com