(9分)已知二次函數(shù)的圖象與x軸相交于A、B兩點(A
左B右),與y軸相交于點C,頂點為D.
(1)求m的取值范圍;
(2)當點A的坐標為,求點B的坐標;
(3)當BC⊥CD時,求m的值.

解:(1)∵二次函數(shù)的圖象與x軸相交于A、B兩點
∴b2-4ac>0,∴4+4m>0,······································································· 2分
解得:m>-1························································································· 3分
(2)解法一:
∵二次函數(shù)的圖象的對稱軸為直線x=-=1························· 4分
∴根據(jù)拋物線的對稱性得點B的坐標為(5,0)··············································· 6分
解法二:
把x=-3,y=0代入中得m="15···············································" 4分
∴二次函數(shù)的表達式為
令y=0得········································································ 5分
解得x1=-3,x2=5
∴點B的坐標為(5,0)··········································································· 6分
(3)如圖,過D作DE⊥y軸,垂足為E.

∴∠DEC=∠COB=90°,
當BC⊥CD時,∠DCE +∠BCO=90°,
∵∠DEC=90°,∴∠DCE +∠EDC=90°,∴∠EDC=∠BCO.
∴△DEC∽△COB,∴.····························································· 7分
由題意得:OE=m+1,OC=m,DE=1,∴EC=1.∴
∴OB=m,∴B的坐標為(m,0).······························································ 8分
將(m,0)代入得:-m 2+2 m + m=0.
解得:m1=0(舍去), m2=3.·································································· 9分

解析

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)的圖象與x軸交點的橫坐標分別為x1=4,x2=-2,且圖象經(jīng)過點(0,-4),求這個二次函數(shù)的解析式,并求出最大(或最。┲担

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)的圖象與x軸兩交點間的距離為2,若將圖象沿y軸方向向上平移3個單位,則圖象恰好經(jīng)過原點,且與x軸兩交點間的距離為4,求原二次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)的圖象與y軸的交點坐標為(0,a),與x軸的交點坐標為(b,0)和(-b,0),若a>0,則函數(shù)解析式為( 。
A、y=
a
b2
x2+a
B、y=-
a
b2
x2+a
C、y=-
a
b2
x2-a
D、y=
a
b2
x2-a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)的圖象與x軸交于點A(-1,0)和點B(3,0),且與直線y=kx-4交y軸于點C. 
(1)求這個二次函數(shù)的解析式;
(2)如果直線y=kx-4經(jīng)過二次函數(shù)的頂點D,且與x軸交于點E,△AEC的面積與△BCD的面積是否相等?如果相等,請給出證明;如果不相等,請說明理由;
(3)求sin∠ACB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)的圖象與x軸交于A(-2,0),B(3,0)兩點,且函數(shù)有最大值為2,求二次函數(shù)的解析式.

查看答案和解析>>

同步練習冊答案