如圖,點(diǎn)C是以AB為直徑的⊙O上的一點(diǎn),AD與過(guò)點(diǎn)C的切線(xiàn)互相垂直,垂足為點(diǎn)D.
(1)求證:AC平分∠BAD;
(2)若CD=1,AC=,求⊙O的半徑長(zhǎng).
(1)見(jiàn)解析;(2).
【解析】
試題分析:(1)連接OC,由OA=OC得∠ACO=∠CAO,由切線(xiàn)的性質(zhì)得出OC⊥CD,根據(jù)垂直于同一直線(xiàn)的兩直線(xiàn)平行得到AD∥CO,由平行線(xiàn)的性質(zhì)得∠DAC=∠ACO,等量代換后可得∠DAC=∠CAO,即AC平分∠BAD.
過(guò)點(diǎn)O作OE⊥AC于E.先在Rt△ADC中,由勾股定理求出AD=3,由垂徑定理求出AE=,再根據(jù)兩角對(duì)應(yīng)相等的兩三角形相似證明△AEO∽△ADC,由相似三角形對(duì)應(yīng)邊成比例得到,求出AO=,即⊙O的半徑為.
試題解析:(1)證明:如圖,連接OC,
∵OA=OC,∴∠ACO=∠CAO.
∵CD切⊙O于C,∴OC⊥CD.
又∵AD⊥CD,∴AD∥CO.
∴∠DAC=∠ACO.
∴∠DAC=∠CAO,即AC平分∠BAD.
(2)如圖,過(guò)點(diǎn)O作OE⊥AC于E.
在Rt△ADC中,,
∵OE⊥AC,∴AE=AC=.
∵∠CAO=∠DAC,∠AEO=∠ADC=90°,
∴△AEO∽△ADC.
∴,即,
∴AO=,即⊙O的半徑為.
考點(diǎn):1.垂徑定理的性質(zhì);2.相似三角形的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:013
A.∶1 B. ∶2
C.∶4 D. ∶4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(遼寧營(yíng)口卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,點(diǎn)C是以AB為直徑的⊙O上的一點(diǎn),AD與過(guò)點(diǎn)C的切線(xiàn)互相垂直,垂足為點(diǎn)D.
(1)求證:AC平分∠BAD;
(2)若CD=1,AC=,求⊙O的半徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年遼寧省營(yíng)口市中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com